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Generalization of a density theorem of
Khinchin and diophantine approximation

par József BECK et William W. L. CHEN

Résumé. La version continue d’un résultat célèbre de Khinchin dit qu’une
demi-droite torique dans le carré unitaire [0, 1]2 est superdense, c’est-à-dire
vérifie une forme optimale de densité quantitative en temps, si et seulement
si la pente de la géodésique est un nombre mal approché. Nous étendons ce
résultat de Khinchin au cas où le tore unitaire [0, 1]2 est remplacé par une
surface à petits carreaux finie. En particulier, nous montrons qu’il est possible
d’étudier ce problème très théorique en se limitant à des outils traditionnels
de la théorie des nombres, en utilisant uniquement les fractions continues et le
célèbre théorème des trois distances d’approximation diophantienne combiné
avec un processus itératif.

Nous améliorons un résultat antérieur des auteurs et de Yang [1] où il est
montré que les nombres mal approchables satisfaisant une restriction tech-
nique assez sévère sur les chiffres de leurs fractions continues fournissent des
géodésiques superdenses. Nous surmontons ici cet obstacle technique.

Cet article est autosuffisant et n’exige pas la connaissance de la théorie des
systèmes dynamiques.

Abstract. The continuous version of a famous result of Khinchin says that
a half-infinite torus line in the unit square [0, 1]2 exhibits superdensity, a best
form of time-quantitative density, if and only if the slope of the geodesic
is a badly approximable number. We extend this result of Khinchin to the
case when the unit torus [0, 1]2 is replaced by a finite polysquare translation
surface, or square tiled surface. In particular, we show that it is possible to
study this very number-theoretic problem by restricting to traditional tools
in number theory, using only continued fractions and the famous 3-distance
theorem in diophantine approximation combined with an iterative process.

We improve on an earlier result of the authors and Yang [1] where it is
shown that badly approximable numbers that satisfy a quite severe techni-
cal restriction on the digits of their continued fractions lead to superdense
geodesics. Here we overcome this technical impediment.

This paper is self-contained, and the reader does not need any knowledge
of dynamical systems.

Manuscrit reçu le 20 avril 2022, révisé le 3 avril 2023, accepté le 28 avril 2023.
2020 Mathematics Subject Classification. 11K38, 37E35.
Mots-clefs. geodesics, billiards, density.
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1. Introduction

It is well known that the distribution of the irrational rotation sequence
nα mod 1, n = 1, 2, 3, . . . , is intimately related to the distribution of half-
infinite torus lines of slope α in the unit square [0, 1]2, i.e., geodesics of slope
α on the unit torus [0, 1]2. An old result of Khinchin [7, Theorem 26] implies
the following result concerning superdensity of geodesics; an alternative
proof can be found in [1, Lemma 6.1.1].

Theorem (Khinchin). Any half-infinite geodesic is superdense on the unit
torus [0, 1]2 if and only if the slope of the geodesic is a badly approximable
number.

Recall that an irrational number α, with continued fraction

(1.1) α = [a0; a1, a2, a3, . . .] = a0 + 1
a1 + 1

a2+ 1
a3+···

,

is said to be badly approximable if there exists a constant A such that the
continued fraction digits ai ⩽ A for every i = 0, 1, 2, 3, . . . .

Superdensity is a time-quantitative criterion. A half-infinite geodesic
L(t), t ⩾ 0, equipped with the usual arc-length parametrization, is su-
perdense on the unit torus [0, 1]2 if there exists an absolute constant C1 =
C1(L) > 0 such that, for every integer n ⩾ 1, the initial segment L(t),
0 ⩽ t ⩽ C1n, of the geodesic gets (1/n)-close to every point of [0, 1]2. Note
that for convenience, we use the same letter L to denote both the map
representing the geodesic and the initial segment of the geodesic. However,
the ranges of t given remove any ambiguity.

This concept of superdensity is a best possible form of time-quantitative
density, in the sense that the linear length C1n cannot be replaced by
any sublinear length o(n) as n → ∞. For a simple proof of this; see [1,
Section 6.1].

A very natural number-theoretic question concerns possible extension of
the result of Khinchin by replacing the unit torus [0, 1]2 by a finite surface
of a certain kind.

A finite polysquare region, or a finite square tiled region in the terminology
of dynamical systems, is an arbitrary connected, but not necessarily simply-
connected, polygon P on the plane which is tiled with unit squares, assumed
to be closed, that we call the atomic squares of P , and which satisfies the
following conditions:

(i) Any two atomic squares in P either are disjoint, or intersect at a
single point, or have a common edge.

(ii) Any two atomic squares in P are joined by a chain of atomic squares
where any two neighbors in the chain have a common edge.
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Note that P may have holes, and we also allow whole barriers which are
horizontal or vertical walls that consist of one or more boundary edges of
atomic squares.

Furthermore, a finite polysquare region can be converted to a finite
polysquare translation surface, or square tiled surface, by pairwise identifi-
cation of the boundary horizontal edges and pairwise identification of the
boundary vertical edges. Geodesic flow on this surface is thus 1-direction
linear flow. In Figure 1.1, we show examples of polysquare translation sur-
faces where identified pairs of edges can be obtained from each other by per-
pendicular translation. The surface in the picture on the left has 5 atomic
squares, whereas the surface in the picture on the right has 32 atomic
squares, 2 holes as well as 2 horizontal walls and 4 vertical walls. Some 1-
direction geodesic segments are shown. These depend on the detailed edge
identification which we have not shown.

Figure 1.1. Some finite polysquare translation surfaces

The concept of superdensity can be extended to finite polysquare sur-
faces in a natural way. A half-infinite geodesic L(t), t ⩾ 0, equipped with
the usual arc-length parametrization, is superdense on a finite polysquare
surface P if there exists an absolute constant C1 = C1(P; L) > 0 such
that, for every integer n ⩾ 1, the initial segment L(t), 0 ⩽ t ⩽ C1n, of the
geodesic gets (1/n)-close to every point of P.

Using traditional tools in number theory based on diophantine approxi-
mation and continued fractions, we give a proof of the following extension
of the result of Khinchin.
Theorem 1.1. Let P be an arbitrary finite polysquare translation surface.
Then a half-infinite geodesic that does not hit a vertex of P is superdense
on P if and only if the slope of the geodesic is a badly approximable number.

Theorem 1.1 is an if and only if type result, where one of the two im-
plications is a straightforward corollary of Khinchin’s theorem. Indeed, 1-
direction geodesic flow on a finite polysquare translation surface modulo one
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becomes 1-direction geodesic flow on the unit torus [0, 1]2, which implies
that a superdense geodesic must have a badly approximable slope. The hard
task is to prove the converse, that every badly approximable slope leads to
superdensity.

A finite polysquare translation surface may have singularities. These then
make the system non-integrable and the analysis much harder. A pioneering
result in this direction concerns geodesics on a large class of surfaces, which
we state below in the special case of finite polysquare translation surfaces.
This result is time-qualitative in nature, in that it does not give any indi-
cation on how long it takes for the geodesic to get within a given distance
of a given point in P. Indeed, the traditional approach from the viewpoint
of dynamical systems is based on application of results such as Birkhoff’s
ergodic theorem which are essentially time-qualitative in nature. Lacking
an error term, they do not appear to lead naturally to time-quantitative
statements.

Theorem (Katok–Zemlyakov [17]). Any half-infinite geodesic on a finite
polysquare translation surface P with irrational slope is dense unless it hits
a vertex of P and becomes undefined.

In a recent series of papers [1, 2, 3, 4], the authors and their co-authors are
able to establish many results concerning the long-term time-quantitative
behavior in many flat systems concerning 1-direction geodesic flow on sur-
faces where the faces have zero curvature. In particular, a weaker form of
Theorem 1.1 is established, where it is shown that superdensity follows if
the slope α given by (1.1) satisfies the additional technical requirement that
the digits a0, a1, a2, a3, . . . are all integer multiples of the street-LCM of the
finite polysquare translation surface under consideration. The street-LCM
of a finite polysquare translation surface is the lowest common multiple of
the lengths of the horizontal and the vertical streets of the surface. While
this excludes many badly approximable slopes, the method nevertheless
gives an uncountable set of slopes which guarantee superdensity. In Theo-
rem 1.1, we remove this technical impediment.

The proof of Theorem 1.1 here, however, is completely different from
our earlier technique. However, the two different approaches share a com-
mon characteristic, in that neither is based on the traditional application
of ergodic theory in the earlier study of density and uniformity using tradi-
tional techniques in dynamical systems. Instead, we appeal to a non-ergodic
approach, and base our arguments on number theory and combinatorics.

We thus have two methods to prove superdensity. They are not com-
parable, and have different advantages. For instance, the shortline method
developed in [1] works beyond geodesics on polysquare translation surfaces,
and can give superdensity for geodesics on any regular polygon surface. We
do not see how we can establish such a result with the method of this paper.
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Our proof here of Theorem 1.1 is elementary but not simple. We therefore
start by illustrating the ideas by studying the special case of the L-surface,
which is arguably the simplest non-integrable polysquare
translation surface.

The picture on the left in Figure 1.2 shows the L-shape region composed
of 3 unit squares. Furthermore, it shows the L-graph, which is an undirected
planar graph with 8 vertices, 5 horizontal edges and 5 vertical edges. Using
this picture and identifying the edges, we can reduce the number of vertices.
On identifying the edges h1, we see that A = G and B = F . On identifying
the edges h2, we see that B = E and C = D. On identifying the edges v1,
we see that A = C and H = D. On identifying the edges v2, we see that
H = E and G = F . Thus all the vertices are identified with each other, and
we have essentially only 1 vertex. This single vertex is a split singularity
point of the geodesic flow, explaining why it is a non-integrable system; see
the two geodesics in the picture on the right in Figure 1.2.

Furthermore, the surface has 3 faces and, after identification, 6 edges, so
the Euler characteristic is χ = 1−6+3 = −2. The genus g is obtained from
the well known formula g = 1 − (χ/2) = 1 + 1 = 2, and so the surface is
homeomorphic to a 2-holed torus using the classification theorem of closed
surfaces. We call this the L-surface. It is equipped with a flat metric, and
the curvature is zero on every square face. The two geodesics in the picture
on the right in Figure 1.2 illustrate why the vertex E, and hence every other
vertex, is a split singularity of the geodesic flow. The L-surface is classified
as a Riemann surface with a singular point.

A B C

H
E D

G Fh1

h1

h2

h2

h3

v1 v1

v2 v2

v3

Figure 1.2. The L-surface and two geodesics

As an analog of half-infinite geodesics on the unit torus [0, 1]2, we can
consider half-infinite geodesics on the L-surface. A particle moves on the
geodesic with unit speed, so that time equals distance. If a geodesic on
the L-surface has irrational slope and never hits the singular point, then
in the L-shape it is represented as a union of infinitely many parallel line
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segments. A geodesic is uniquely determined by one of its points and its
constant velocity vector, just like a geodesic on the unit torus [0, 1]2.

We shall first prove the following special case of Theorem 1.1.

Theorem 1.2. If a half-infinite geodesic that does not hit a vertex of the
L-surface has a slope that is a badly approximable number, then it is super-
dense on the L-surface.

We can summarize the proof of Theorem 1.2, and hence also Theorem 1.1,
in a nutshell as a careful use of the classical tool of continued fractions.

Before we begin our proof of Theorem 1.2, however, we make some com-
ments.

First of all, the situation is completely different if we consider uniform
distribution instead of density.

Corresponding to superdensity, we can define superuniformity as a best
form of time-quantitative uniformity, where the relevant discrepancy is of
logarithmic size compared to the length of the geodesic. For half-infinite
geodesics on the unit torus [0, 1]2, it follows from time-quantitative exten-
sions of the famous Kronecker–Weyl equidistribution theorem that a geo-
desic on the unit torus is superuniform if the slope is a badly approximable
number. Actually, superuniformity is equivalent to the condition that the
Cesaro-mean of the continued fraction digits of the slope of the geodesic is
bounded.

The situation is very different if we consider instead half-infinite geodesics
on the L-surface. While any half-infinite geodesic with a quadratic irrational
slope is uniformly distributed on the L-surface, the rate of convergence
to uniformity can be vastly different for two distinct quadratic irrational
slopes. For example, it is shown in [3, 4] that a half-infinite geodesic of slope
α =

√
2 on the L-surface is superuniform, whereas a half-infinite geodesic

of slope α = 1 +
√

2 on the L-surface exhibits discrepancy greater than
random square-root size.

Secondly, Theorem 1.1 has analogs for billiard orbits in finite polysquare
regions and for geodesics on surfaces of finite simply-connected polycube
regions. Billiard orbits in finite polysquare regions and geodesics on finite
polysquare surfaces are related by the concept of unfolding due to König
and Szücs [8], first introduced to the unit square, leading to 4-fold covering
by reflection across a horizontal axis and across a vertical axis. For an
illustration, see also [3, Section 1.3]. As to surfaces of simply-connected
polycube regions, the simplest example is the surface of the unit cube.
Geodesic flow on such a surface is 4-direction geodesic flow, and it can be
related to 1-direction geodesic flow on a surface obtained by combining 4
rotated copies of this surface in a suitable way. For an illustration, see [2,
Example 7.2.4].
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Finally, it has been drawn to our attention that there is perhaps a pos-
sibility of establishing results such as Theorem 1.1 by using the ideas of
Teichmüller dynamics, a very powerful tool in dynamical systems. Such
techniques are beyond the reach of many who are not experts in that area.
Our primary aim in this paper is to show that traditional number-theoretic
techniques, involving only continued fractions and diophantine approxima-
tion combined with an iterative process, are sufficient for our needs. Nev-
ertheless we make some brief comments at the end of this paper on work
using this alternative approach.

2. Some prerequisites

Without loss of generality, we assume that the slope of the geodesic is
greater than 1. Suppose that the geodesic has slope 1/α, where 0 < α < 1
is irrational.

Our first tool is an interval exchange transformation T = Tα which en-
codes the information concerning the particular order with which a geodesic
of slope 1/α keeps hitting the horizontal edges h1, h2, h3.

The first step involves identifying the horizontal edges h1, h2, h3 with
unit intervals by making use of the correspondences

h1 = [0, 1), h2 = [1, 2), h3 = [2, 3),
perhaps somewhat abusing notation, as shown in Figure 2.1.

h1

h1

h2

h2

h3

[0, 1) [1, 2)

[2, 3) [1, 2)

[0, 1)

Figure 2.1. Representing horizontal edges of the L-surface
by intervals

We now consider the piecewise linear map T = Tα defined according to
Figure 2.2.

This is called the interval exchange transformation. More precisely, we
have

T ([0, 1 − α)) = [2 + α, 3), T ([1 − α, 1)) = [1, 1 + α),(2.1)
T ([1, 2 − α)) = [1 + α, 2), T ([2 − α, 2)) = [2, 2 + α),(2.2)

T ([2, 3 − α)) = [α, 1), T ([3 − α, 3)) = [0, α),(2.3)
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Figure 2.2. The interval exchange transformation T = Tα

where, for instance, T ([0, 1−α)) = [2+α, 3) describes the 1/α flow mapping
the part [0, 1 − α) in h1 = [0, 1) to the part [2 + α, 3) in h3 = [2, 3) linearly
in the form

Tx = 2 + α + x, x ∈ [0, 1 − α),
and similarly for the rest in (2.1)–(2.3).

The novelty is that T acts on the longer interval [0, 3) instead of the unit
interval [0, 1), but if we consider T modulo 1, then it acts simply as an
α-shift, or irrational rotation, in the unit interval.

We next consider our main idea, which involves continued fractions. Con-
sider an irrational number

(2.4) α = [a0; a1, a2, a3, . . .] = a0 + 1
a1 + 1

a2+ 1
a3+···

,

where a0 ⩾ 0 and ai ⩾ 1, i = 1, 2, 3, . . . , are integers. The rational numbers

(2.5) pk

qk
= pk(α)

qk(α) = [a0; a1, . . . , ak], k = 0, 1, 2, 3, . . . ,

are the k-convergents of α. It is well known that they give rise to the best
rational approximations of the irrational number α, and we have

(2.6) p0
q0

<
p2
q2

<
p4
q4

< . . . < α < . . . <
p5
q5

<
p3
q3

<
p1
q1

.

Let ∥y∥ denote the distance of a real number y from the nearest integer.
We shall make use of the fact that for an irrational number α the sequence

min
1⩽k⩽n

∥kα∥, n = 1, 2, 3, . . . ,

is well described by the continued fraction expansion of α.
For every k = 0, 1, 2, 3, . . . , we have

(2.7) ∥qα∥ ⩾ ∥qkα∥, 1 ⩽ q < qk+1, ∥qk+1α∥ < ∥qkα∥,

as well as

(2.8) 1
qk+1 + qk

⩽ ∥qkα∥ ⩽
1

qk+1
.
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Indeed, the sequences pk and qk, k = 0, 1, 2, 3, . . . , are given by the initial
values

p0 = a0, p1 = a1a0 + 1, q0 = 1, q1 = a1,

and the recurrence relations
(2.9) pk+1 = ak+1pk + pk−1, qk+1 = ak+1qk + qk−1, k ⩾ 1.

We also have
pk−1qk − qk−1pk = (−1)k, k ⩾ 1.

On the other hand, using (2.6) and (2.9), it is easy to show that
(2.10) ∥qk+1α∥ + ak+1∥qkα∥ = ∥qk−1α∥.

We need the following result.

Theorem (3-distance theorem). Consider the n + 1 numbers
0, α, 2α, 3α, . . . , nα

modulo 1 in the unit torus/circle [0, 1), leading to an (n+1)-partition. This
partition exhibits at most 3 different distances between consecutive points.
Furthermore, every positive integer n can be expressed uniquely in the form

n = µqk + qk−1 + r, with 1 ⩽ µ ⩽ ak+1 and 0 ⩽ r < qk,

in terms of the continued fraction (2.4) of α and its convergents (2.5), with
the convention that q−1 = 0. Then

(i) the distance ∥qkα∥ shows up precisely n + 1 − qk times;
(ii) the distance ∥qk−1α∥ − µ∥qkα∥ shows up precisely r + 1 times; and
(iii) the distance ∥qk−1α∥ − (µ − 1)∥qkα∥ shows up precisely qk − r − 1

times.

This surprising geometric fact, formulated as a conjecture by Steinhaus,
has many proofs, by Sós [12, 13], Swierczkowski [16], Surányi [15], Halton [5]
and Slater [11], with others published more recently.

3. Proof of Theorem 1.2

Given an integer k ⩾ 1, let Ak(α) denote the partition of the unit
torus/circle [0, 1) with qk+1 = qk+1(α) division points {qα}, −1 ⩽ q ⩽
qk+1 − 2, where {x} denotes the fractional part of a real number x. Note
that the choices q = −1, 0 in {qα} represent the dangerous endpoints of the
special intervals [0, 1 − α) and [1 − α, 1) in (2.1). These are the two singu-
larities of the interval exchange transformation T restricted to the interval
0 ⩽ x < 1, in the sense that both 0 and T (1 − α) = 1 represent the split
singularity of the L-surface.

A consequence of the special choice n = qk+1 − 1 is that the 3-distance
theorem simplifies to a 2-distance theorem. This in turn leads to some very
useful information concerning the distances between the consecutive points
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of the qk+1-partition Ak(α) of the unit torus/circle [0, 1). Indeed, using the
second recurrence relation in (2.9), we have

n = qk+1 − 1 = ak+1qk + qk−1 − 1 = µqk + qk−1 + r,

with µ = ak+1 − 1 and r = qk − 1. Since qk − r − 1 = 0, it follows from the
3-distance theorem that there are only two distances

(3.1) ∥qkα∥ and ∥qk−1α∥ − (ak+1 − 1)∥qkα∥ = ∥qk+1α∥ + ∥qkα∥,

in view of (2.10).
It follows immediately from (2.7) that one of the neighbors of 0 in the

partition Ak(α) is {qkα} which clearly has distance ∥qkα∥ from 0 in the unit
torus/circle. Since α is irrational, the other neighbor of 0 in the partition
Ak(α) must have distance ∥qk+1α∥ + ∥qkα∥ from 0 in the unit torus/circle.
Simple calculation then shows that it is {((ak+1 − 1)qk + qk−1)α}. Thus the
two neighbors

{qkα} and {((ak+1 − 1)qk + qk−1)α}

of 0 in the partition Ak(α) exhibit the two gaps in (3.1) in some order.
Similarly, the two neighbors

{(qk − 1)α} and {((ak+1 − 1)qk + qk−1 − 1)α}

of 1 − α = {−α} in the partition Ak(α) exhibit the same two gaps in (3.1)
in the same order.

The union of the left and right neighborhoods of 0 in the partition Ak(α)
has the form

(3.2) B(0) = (−d∗, d∗∗),

and the union of the left and right neighborhoods of 1 − α = {−α} in the
partition Ak(α) has a similar form

(3.3) B(−1) = (1 − α − d∗, 1 − α + d∗∗),

due to the same order, where

(3.4) {d∗, d∗∗} = {∥qkα∥, ∥qk+1α∥ + ∥qkα∥},

but we have not specified which one is which. We refer to B(0) and B(−1) as
the buffer zones of the singularities 0 and 1−α respectively in the partition
Ak(α).

We consider the special intervals

(3.5) Jk(q) = J(α; k; q) = ({qα} − d∗∗, {qα} + d∗), 1 ⩽ q ⩽ qk+1 − 2.

Remark 1. These short special intervals (3.5) have three crucial properties:
(i) They completely cover the two long intervals (0, 1−α) and (1−α, 1).
(ii) They avoid the singularities 0, 1 and 1 − α, in view of (3.2)–(3.4).
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(iii) Any two intervals in (0, 1−α) or in (1−α, 1) arising from neighboring
partition points exhibit substantial overlapping. More precisely, if
1 ⩽ q′, q′′ ⩽ qk+1 −2 are two integers such that {q′α} and {q′′α} are
neighboring points in the partition Ak(α), so that both points are
in the interval (0, 1−α) or both points are in the interval (1−α, 1),
then

(3.6) length(Jk(q′) ∩ Jk(q′′)) ⩾ min{d∗, d∗∗} = ∥qkα∥.

Since the length of Jk(q) is 2∥qkα∥ + ∥qk+1α∥, the trivial upper
bound

2∥qkα∥ + ∥qk+1α∥ < 3∥qkα∥
and (3.6) together justify the term substantial overlapping.

Since T acts on the interval/circle [0, 3), for every interval Jk(q), 1 ⩽ q ⩽
qk+1 − 2, given by (3.5), we define its 3-copy extension Jk(q; 3) by

(3.7) Jk(q; 3) = Jk(q) ∪ (1 + Jk(q)) ∪ (2 + Jk(q)) ⊂ [0, 3),

a union of Jk(q) with two of its translates.
After our preparation, we are now ready to study an orbit. Let Lα(S; t),

t ⩾ 0, be a parametrized half-infinite geodesic with initial point S and slope
1/α, under the usual arc-length parametrization.

Let M be large, and consider the initial segment Lα(S; t), 0 ⩽ t ⩽ M , of
length M , which we denote by (Lα; M). Suppose that

(3.8) 0 ⩽ t1 < t2 < t3 < . . . < tm ⩽ M,

where

(3.9) ti+1 − ti =
√

1 + α2, 1 ⩽ i ⩽ m − 1,

is the sequence of time instances t when the initial segment Lα(S; t), 0 ⩽
t ⩽ M , intersects the union h1 ∪ h2 ∪ h3 = [0, 3) of the 3 horizontal edges
of the L-surface in Figure 2.1. For notational simplicity let

(3.10) yi = Lα(S; ti) ∈ [0, 3), 1 ⩽ i ⩽ m,

denote these intersection points.
Using the interval exchange transformation T = Tα : [0, 3) → [0, 3), we

see that any two time-consecutive intersection points are governed by the
simple relation

(3.11) T (yi) = yi+1, 1 ⩽ i ⩽ m − 1.

Lemma 3.1. Suppose that Jk(ℓ1) is a special interval of the form (3.5),
and there exists r(ℓ1) ∈ {0, 1, 2} such that

(3.12) {yi : 1 ⩽ i ⩽ m} ∩ (r(ℓ1) + Jk(ℓ1)) = ∅,
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where {yi : 1 ⩽ i ⩽ m} is the set of intersection points defined in (3.10).
Then for every integer 1 − ℓ1 ⩽ h ⩽ qk+1 − 2 − ℓ1, we have

(3.13) {yi : qk+1 ⩽ i ⩽ m − qk+1} ∩ T h(r(ℓ1) + Jk(ℓ1)) = ∅.

Proof. Since qk+1 ⩾ 1 and m − qk+1 ⩽ m, it follows trivially from (3.12)
that (3.13) holds for h = 0.

Combining (3.11) and (3.12), we see that
{yi : 2 ⩽ i ⩽ m} ∩ T (r(ℓ1) + Jk(ℓ1)) = ∅.

Iterating this argument, we see that for every integer 1 ⩽ h ⩽ qk+1 −2− ℓ1,
we have

{yi : 1 + h ⩽ i ⩽ m} ∩ T h(r(ℓ1) + Jk(ℓ1)) = ∅.

Since qk+1 ⩾ qk+1 − 1 − ℓ1 ⩾ h + 1 and m − qk+1 ⩽ m, it follows that (3.13)
holds for every integer 1 ⩽ h ⩽ qk+1 − 2 − ℓ1.

For every negative integer 1 − ℓ1 ⩽ h ⩽ −1, using the inverse transfor-
mation T −1, combining (3.11) and (3.12), and iterating, we have

{yi : 1 ⩽ i ⩽ m + h} ∩ T h(r(ℓ1) + Jk(ℓ1)) = ∅.

Since qk+1 ⩾ 1 and m + h ⩾ m + 1 − ℓ1 ⩾ m + 1 − qk+1 ⩾ m − qk+1, it
follows that (3.13) holds for every integer 1 − ℓ1 ⩽ h ⩽ −1.

The proof of the lemma is now complete. □

Remark 2. We often refer to the deduction of (3.13) from (3.12) as a
T -power extension argument.

Let 1 ⩽ ℓ1 ⩽ qk+1 − 2 be fixed.
For notational convenience, for every integer 1 − ℓ1 ⩽ h ⩽ qk+1 − 2 − ℓ1,

we write
(3.14) T h(r(ℓ1) + Jk(ℓ1)) = r(ℓ1 + h) + Jk(ℓ1 + h).
Note that (3.14) defines r(q) for every integer 1 ⩽ q ⩽ qk+1 − 2. Further-
more, combining (3.13) and (3.14), we have
(3.15) {yi : qk+1 ⩽ i ⩽ m − qk+1} ∩ (r(q) + Jk(q)) = ∅

for every integer 1 ⩽ q ⩽ qk+1 − 2.
Suppose that I0 ⊂ [0, 3) is (Lα; M)-free, so that

{yi : 1 ⩽ i ⩽ m} ∩ I0 = ∅,

where {yi : 1 ⩽ i ⩽ m} is the set of intersection points defined in (3.10).
Let k be an integer, and suppose that Jk(ℓ1) is a special interval of the
form (3.5), and there exists r(ℓ1) ∈ {0, 1, 2} such that
(3.16) r(ℓ1) + Jk(ℓ1) ⊂ I0.

Then (3.12) holds.
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Remark 3. We shall later choose an optimal value of k for which (3.16)
holds.

We distinguish a few cases according to the special relations between
various sets of intersection points and various special intervals. We take
advantage of the substantial overlapping of the short special intervals Jk(q)
defined by (3.5).

Recall that if 1 ⩽ q′, q′′ ⩽ qk+1 − 2 are two integers such that {q′α} and
{q′′α} are neighboring points in the partition Ak(α), so that both points
are in the interval (0, 1 − α) or both points are in the interval (1 − α, 1),
then combining (2.8) and (3.6), we have

length(Jk(q′) ∩ Jk(q′′)) ⩾ ∥qkα∥ ⩾
1

qk+1 + qk
>

1
2qk+1

.

Recall also from (2.8), (3.4) and (3.5) that

length(Jk(q)) = 2∥qkα∥ + ∥qk+1α∥ < 3∥qkα∥ ⩽
3

qk+1
,

so that

(3.17) length(Jk+8(q)) <
3

qk+9
.

On the other hand, a trivial deduction from (2.9) gives

qk+2 ⩾ qk+1 + qk ⩾ 2qk,

so that iterating this a few times, we conclude that

(3.18) qk+9 ⩾ 2qk+7 ⩾ 4qk+5 ⩾ 8qk+3 ⩾ 16qk+1.

Combining (3.17) and (3.18), we conclude that the intersection Jk(q′) ∩
Jk(q′′) must contain a special interval of the type Jk+8(q) for some 1 ⩽ q ⩽
qk+9 − 2. We split the argument into two complementary cases.

Case 1A. The following intersection property holds. For every

Jk+8(ℓ) ⊂ Jk(q) and r ∈ {0, 1, 2},

with r ̸= r(q) given by (3.14), we have

(3.19) {yi : qk+1 ⩽ i ⩽ m − qk+1} ∩ (r + Jk+8(ℓ)) ̸= ∅.

Lemma 3.2. Case 1A is impossible.

Case 1B. There exist

Jk+8(ℓ2) ⊂ Jk(q+) and r1 ∈ {0, 1, 2},

with r1 ̸= r(q+) given by (3.14), such that

(3.20) {yi : qk+1 ⩽ i ⩽ m − qk+1} ∩ (r1 + Jk+8(ℓ2)) = ∅.
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We now continue with this particular value of ℓ2.
Since Jk+8(ℓ2) ⊂ Jk(q+), it clearly follows from (3.15) that

(3.21) {yi : qk+1 ⩽ i ⩽ m − qk+1} ∩ (r(q+) + Jk+8(ℓ2)) = ∅.

Since (3.20) and (3.21) are analogs of (3.12), the T -power expansion argu-
ment in the proof of Lemma 3.1 shows that for every integer 1 − ℓ2 ⩽ h ⩽
qk+9 − 2 − ℓ2, we have

{yi : qk+1 +qk+9 ⩽ i⩽m−qk+1 −qk+9}∩T h(r1 +Jk+8(ℓ2)) = ∅,(3.22)
{yi : qk+1 +qk+9 ⩽ i⩽m−qk+1 −qk+9}∩T h(r(q+)+Jk+8(ℓ2)) = ∅.(3.23)

For notational convenience, for every integer 1 − ℓ2 ⩽ h ⩽ qk+9 − 2 − ℓ2, we
write

T h(r(q+) + Jk+8(ℓ2)) = r⋆(ℓ2 + h) + Jk+8(ℓ2 + h),(3.24)
T h(r1 + Jk+8(ℓ2)) = r⋆⋆(ℓ2 + h) + Jk+8(ℓ2 + h).(3.25)

Then combining (3.22)–(3.25), we have

{yi : qk+1 + qk+9 ⩽ i ⩽ m − qk+1 − qk+9} ∩ (r⋆(q) + Jk+8(q)) = ∅,(3.26)
{yi : qk+1 + qk+9 ⩽ i ⩽ m − qk+1 − qk+9} ∩ (r⋆⋆(q) + Jk+8(q)) = ∅,(3.27)

for every integer 1 ⩽ q ⩽ qk+9 − 2. Clearly

r⋆(q) ̸= r⋆⋆(q), 1 ⩽ q ⩽ qk+9 − 2.

We now split Case 1B into two complementary cases.

Case 2A. The following intersection property holds. For every

Jk+16(ℓ) ⊂ Jk+8(q) and r ∈ {0, 1, 2},

with r ̸= r⋆(q), r⋆⋆(q) given by (3.24) and (3.25), we have

{yi : qk+1 + qk+9 ⩽ i ⩽ m − qk+1 − qk+9} ∩ (r + Jk+16(ℓ)) ̸= ∅.

Lemma 3.3. Case 2A is impossible.

Case 2B. There exist

Jk+16(ℓ3) ⊂ Jk+8(q++) and r2 ∈ {0, 1, 2},

with r2 ̸= r⋆(q++), r⋆⋆(q++) given by (3.24) and (3.25), such that

(3.28) {yi : qk+1 + qk+9 ⩽ i ⩽ m − qk+1 − qk+9} ∩ (r2 + Jk+16(ℓ3)) = ∅.

Lemma 3.4. If Case 2B holds, then

(3.29) m ⩽ 2qk+1 + 2qk+9 + 2qk+17 + 6.
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Proof of Theorem 1.2. Suppose that I0 ⊂ [0, 3) is (Lα; M)-free, so that

{yi : 1 ⩽ i ⩽ m} ∩ I0 = ∅.

Let Jk(ℓ1) = J(α; k; ℓ1) be the longest special interval of the form (3.5)
such that

r(ℓ1) + Jk(ℓ1) ⊂ I0 for some ℓ1 and r(ℓ1) ∈ {0, 1, 2}.

Then

(3.30) length(I0) < 4(∥qk−1α∥ + ∥qkα∥),

since otherwise there exists a longer special interval

r(ℓ) + Jk−1(ℓ) ⊂ I0 for some ℓ and r(ℓ) ∈ {0, 1, 2},

a contradiction. Combining (3.30) with (2.8), we have

(3.31) length(I0) <
4
qk

+ 4
qk+1

<
8
qk

.

On the other hand, it follows from (3.8) and (3.9) that

(3.32) M ⩽ (m + 1)
√

1 + α2.

Also, in view of Lemmas 3.2–3.4, it is clear that the bound (3.29) holds.
Finally, recall that 0 < α < 1 and

α = [a1, a2, a3, . . .] = 1
a1 + 1

a2+ 1
a3+···

is badly approximable, so there exists a constant A such that the continued
fraction digits ai ⩽ A for every i = 1, 2, 3, . . . . It follows from (2.9) that

(3.33) qk+1 < qk+9 < qk+17 ⩽ (A + 1)17qk.

Combining (3.29), (3.32) and (3.33), we see that

(3.34) M ⩽ (2qk+1 + 2qk+9 + 2qk+17 + 7)
√

1 + α2 < 7(A + 1)17qk

√
2.

It now follows from (3.31) and (3.34) that a geodesic segment Lα(S; t),
0 ⩽ t ⩽ M , of length M = 7(A + 1)17qk

√
2 must intersect every subinterval

I of h1 ∪ h2 ∪ h3 with length(I) = 8/qk. Since the product M length(I) =
56(A + 1)17√

2 is a constant independent of k, this establishes superdensity
of the half-infinite geodesic. □
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4. Proof of Lemmas 3.2–3.4

Before we present the proof of our main lemmas, we begin by investigat-
ing a simple situation which serves to illustrate our method.

Recall that r(ℓ1) is given by Lemma 3.2.

Simple Case. There exist integers r∗(ℓ1) and r∗∗(ℓ1) such that
(1) r(ℓ1), r∗(ℓ1), r∗∗(ℓ1) form a permutation of 0, 1, 2;
(2) {yi : 1 ⩽ i ⩽ m} ∩ (r∗(ℓ1) + Jk(ℓ1)) = ∅; and
(3) {yi : 1 ⩽ i ⩽ m} ∩ (r∗∗(ℓ1) + Jk(ℓ1)) = ∅.

Lemma 4.1. If the Simple Case holds, then m ⩽ 2qk+1 + 6.

Proof. For notational simplicity, we write

(4.1) Q(k; m) = {yi : qk+1 ⩽ i ⩽ m − qk+1}.

Since the properties (2) and (3) in the Simple Case are analogs of (3.12),
we can repeat the T -power extension argument in Lemma 3.1 and conclude
that for every integer 1 − ℓ1 ⩽ h ⩽ qk+1 − 2 − ℓ1, we have

Q(k; m) ∩ T h(r∗(ℓ1) + Jk(ℓ1)) = ∅,(4.2)
Q(k; m) ∩ T h(r∗∗(ℓ1) + Jk(ℓ1)) = ∅.(4.3)

As in (3.14), we write

T h(r∗(ℓ1) + Jk(ℓ1)) = r∗(ℓ1 + h) + Jk(ℓ1 + h),(4.4)
T h(r∗∗(ℓ1) + Jk(ℓ1)) = r∗∗(ℓ1 + h) + Jk(ℓ1 + h),(4.5)

for every integer 1− ℓ1 ⩽ h ⩽ qk+1 −2− ℓ1. Note that (4.4) and (4.5) define
r∗(q) and r∗∗(q) respectively for every integer 1 ⩽ q ⩽ qk+1 −2. Recall next
that r(q) is defined by (3.14). Indeed, using the notation (3.14), it is easy to
check that the assertion (3.13) for every integer 1 − ℓ1 ⩽ h ⩽ qk+1 − 2 − ℓ1
implies that

(4.6) Q(k; m) ∩ (r(ℓ1 + h) + Jk(ℓ1 + h)) = ∅

for every integer 1 − ℓ1 ⩽ h ⩽ qk+1 − 2 − ℓ1.
Combining (4.2)–(4.6) for every integer 1 − ℓ1 ⩽ h ⩽ qk+1 − 2 − ℓ1, we

deduce that for every integer 1 ⩽ q ⩽ qk+1 − 2, we have

Q(k; m) ∩ (r∗(q) + Jk(q)) = ∅,(4.7)
Q(k; m) ∩ (r∗∗(q) + Jk(q)) = ∅,(4.8)
Q(k; m) ∩ (r(q) + Jk(q)) = ∅.(4.9)

Also, in view of the property (1) in the Simple Case, it is clear that
r(q), r∗(q), r∗∗(q) form a permutation of 0, 1, 2 for every integer 1 ⩽ q ⩽
qk+1 − 2.
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By definition, the 3-copy extensions Jk(q; 3), 1 ⩽ q ⩽ qk+1 − 2, give rise
to 6 continuous chains of overlapping intervals in the torus/circle [0, 3) such
that the 6 chains completely cover the 6 intervals
(0, 1 − α), (1 − α, 1), (1, 2 − α), (2 − α, 2), (2, 3 − α), (3 − α, 3),
and there are only 6 points in [0, 3) that are not covered by the 6 chains,
namely

0, 1 − α, 1, 2 − α, 2, 3 − α.

Combining (4.7)–(4.9) for every integer 1 ⩽ q ⩽ qk+1 −2, we deduce that
the set Q(k; m) is not covered by the 6 chains. Indeed, if m ⩾ 2qk+1+7, then
the set (4.1) has at least 7 distinct elements, which is more than 6, giving
rise to a contradiction. We conclude therefore that, under the conditions
of the Simple Case, we must have m ⩽ 2qk+1 + 6, and this completes the
proof. □

Proof of Lemma 3.2. Again, for notational simplicity, we use (4.1).
Our first step is to prove that, under the condition of Case 1A, any two

neighboring 3-copy extensions Jk(q′; 3) and Jk(q′′; 3) are synchronized in
the following precise sense: For each r ∈ {0, 1, 2}, we have
(4.10)

Q(k; m) ∩ (r + Jk(q′)) = ∅ if and only if Q(k; m) ∩ (r + Jk(q′′)) = ∅.

To establish this, we consider two cases.
Suppose first that r = r(q′). Using the notation (3.14), it follows from

(3.13) that
(4.11) Q(k; m) ∩ (r(q′) + Jk(q′)) = ∅.

Assume on the contrary that
(4.12) Q(k; m) ∩ (r(q′) + Jk(q′′)) ̸= ∅.

Then it follows from (3.15) that r(q′′) ̸= r(q′). On the other hand, we know
that the intersection Jk(q′) ∩ Jk(q′′) must contain a special interval of the
type Jk+8(j0) for some j0, so
(4.13) r(q′) + Jk+8(j0) ⊂ (r(q′) + Jk(q′)) ∩ (r(q′) + Jk(q′′)).
Since r(q′) ̸= r(q′′) and Jk+8(j0) ⊂ Jk(q′′), the condition of Case 1A is
satisfied with q = q′′, and (3.19) becomes
(4.14) Q(k; m) ∩ (r(q′) + Jk+8(j0)) ̸= ∅.

But (4.11) and (4.13) contradict (4.14), and so (4.12) fails. Thus our claim
(4.10) holds in this case.

Suppose next that r ̸= r(q′). As before, we use the fact that the inter-
section Jk(q′) ∩ Jk(q′′) must contain a special interval of the type Jk+8(j0)
for some j0, so
(4.15) r + Jk+8(j0) ⊂ (r + Jk(q′)) ∩ (r + Jk(q′′)).
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Since r ̸= r(q′), the condition of Case 1A is satisfied with q = q′, and (3.19)
becomes

(4.16) Q(k; m) ∩ (r + Jk+8(j0)) ̸= ∅.

It now follows from (4.15) and (4.16) that

Q(k; m) ∩ (r + Jk(q′)) ̸= ∅ and Q(k; m) ∩ (r + Jk(q′′)) ̸= ∅,

so that our claim (4.10) holds also in this case.
By definition, the 3-copy extensions Jk(q; 3), 1 ⩽ q ⩽ qk+1 − 2, give rise

to 6 continuous chains of overlapping intervals in the torus/circle [0, 3) such
that the 6 chains completely cover the 6 intervals

(4.17) (0, 1 − α), (1 − α, 1), (1, 2 − α), (2 − α, 2), (2, 3 − α), (3 − α, 3).

The synchronization property we have just established now implies that
each of the 6 long special intervals in (4.17) satisfies one of the following
two properties. Either such a long special interval is disjoint from the set
Q(k; m), or the set Q(k; m) is dense in such a long special interval, in the
precise sense that every subinterval of length 1/qk+8 contains a point from
the set Q(k; m).

Moreover, it is not difficult to show that precisely 2 of the 6 long special
intervals in (4.17) are disjoint from the set Q(k; m). To see this, choose two
integers q′ and q′′ satisfying 1 ⩽ q′, q′′ ⩽ qk+1 − 2 such that

(4.18) Jk(q′) ⊂ (0, 1 − α) and Jk(q′′) ⊂ (1 − α, 1).

Then it follows from (3.13) and (3.14) that

(4.19) Q(k; m)∩(r(q′)+Jk(q′)) = ∅ and Q(k; m)∩(r(q′′)+Jk(q′′)) = ∅.

Now write

(4.20) I1 = r(q′) + (0, 1 − α) and I2 = r(q′′) + (1 − α, 1).

The synchronization property and (4.18)–(4.20) now imply that

Q(k; m) ∩ I1 = ∅ and Q(k; m) ∩ I2 = ∅.

Note that the union I1 ∪ I2 modulo 1 is precisely the unit interval [0, 1).
Now I1 and I2 are 2 of the 6 long special intervals in (4.17). Let Ij , 3 ⩽

j ⩽ 6, denote the remaining long special intervals in (4.17). The condition
of Case 1A now implies that these 4 intervals are not disjoint from Q(k; m),
so that Q(k; m) is dense in each of them. Each T -image T (Ij), j = 1, 2,
has at most 1 common point with the set Q(k; m). This is a contradiction,
since the union T (I1) ∪ T (I2) has a substantial intersection with the union
I3 ∪ I4 ∪ I5 ∪ I6, which implies that it must have a substantial intersection
with the set Q(k; m), much more than at most 2 elements. Thus Case 1A
is impossible, and this completes the proof. □
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Proof of Lemma 3.3. For notational simplicity, we write

(4.21) Q∗(k; m) = {yi : qk+1 + qk+9 ⩽ i ⩽ m − qk+1 − qk+9}.

We can proceed along similar lines as in the first part of the proof of
Lemma 3.2 for Case 1A, and show that any two neighboring 3-copy exten-
sions Jk+8(q′; 3) and Jk+8(q′′; 3) are synchronized in the following precise
sense: For each r ∈ {0, 1, 2}, we have

Q∗(k; m)∩(r+Jk+8(q′)) = ∅ if and only if Q∗(k; m)∩(r+Jk+8(q′′)) = ∅.

By definition, the 3-copy extensions Jk+8(q; 3), 1 ⩽ q ⩽ qk+9−2, give rise
to 6 continuous chains of overlapping intervals in the torus/circle [0, 3) such
that the 6 chains completely cover the 6 intervals (4.17). The synchroniza-
tion property now implies that each of the 6 long special intervals in (4.17)
satisfies one of the following two properties. Either such a long special in-
terval is disjoint from the set Q∗(k; m), or the set Q∗(k; m) is dense in such
a long special interval, in the precise sense that every subinterval of length
1/qk+16 contains a point from the set Q∗(k; m).

Moreover, it is not difficult to show that precisely 4 of the 6 long special
intervals in (4.17) are disjoint from the set Q∗(k; m). To see this, choose
two integers q′ and q′′ satisfying 1 ⩽ q′, q′′ ⩽ qk+9 − 2 such that

(4.22) Jk+8(q′) ⊂ (0, 1 − α) and Jk+8(q′′) ⊂ (1 − α, 1).

Then it follows from (3.26) and (3.27) that

Q∗(k; m) ∩ (r⋆(q′) + Jk+8(q′)) = ∅, Q∗(k; m) ∩ (r⋆(q′′) + Jk+8(q′′)) = ∅,

(4.23)

Q∗(k; m) ∩ (r⋆⋆(q′) + Jk+8(q′)) = ∅, Q∗(k; m) ∩ (r⋆⋆(q′′) + Jk+8(q′′)) = ∅.

(4.24)

Now write

I1 = r⋆(q′) + (0, 1 − α), I2 = r⋆(q′′) + (1 − α, 1),(4.25)
I3 = r⋆⋆(q′) + (0, 1 − α), I4 = r⋆⋆(q′′) + (1 − α, 1).(4.26)

The synchronization property and (4.22)–(4.26) now imply that

Q∗(k; m) ∩ I1 = ∅, Q∗(k; m) ∩ I2 = ∅,

Q∗(k; m) ∩ I3 = ∅, Q∗(k; m) ∩ I4 = ∅.

Note that the union I1 ∪ I2 ∪ I3 ∪ I4 modulo 1 is precisely the unit interval
[0, 1) twice.

Now I1, I2, I3, I4 are 4 of the 6 long special intervals in (4.17). Let Ij ,
j = 5, 6, denote the remaining long special intervals in (4.17). The condition
of Case 2A now implies that these 2 intervals are not disjoint from Q∗(k; m),
so that Q∗(k; m) is dense in each of them. Each T -image T (Ij), j = 1, . . . , 4,
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has at most 1 common point with the set Q∗(k; m). This is a contradiction,
since the union

T (I1) ∪ T (I2) ∪ T (I3) ∪ T (I4)
has a substantial intersection with the union I5 ∪ I6, which implies that
it must have a substantial intersection with the set Q∗(k; m), much more
than at most 4 elements. Thus Case 2A is impossible, and this completes
the proof. □

Proof of Lemma 3.4. For notational simplicity, we define Q∗(k; m) by
(4.21), and write

Q∗∗(k; m) = {yi : qk+1 + qk+9 + qk+17 ⩽ i ⩽ m − qk+1 − qk+9 − qk+17}.

Since (3.28) is an analog of (3.12), we can repeat the T -power extension
argument in Lemma 3.1 and conclude that for every integer 1 − ℓ3 ⩽ h ⩽
qk+17 − 2 − ℓ3, we have

(4.27) Q∗∗(k; m) ∩ T h(r2 + Jk+16(ℓ3)) = ∅.

Since Jk+16(ℓ3) ⊂ Jk+8(q++), it follows from (3.26) and (3.27) that

Q∗(k; m) ∩ (r⋆(q++) + Jk+16(ℓ3)) = ∅,(4.28)
Q∗(k; m) ∩ (r⋆⋆(q++) + Jk+16(ℓ3)) = ∅.(4.29)

Next, note that (4.28) and (4.29) are also analogs of (3.12), so again we can
repeat the T -power extension argument in Lemma 3.1 and conclude that
for every integer 1 − ℓ3 ⩽ h ⩽ qk+17 − 2 − ℓ3, we have

Q∗∗(k; m) ∩ T h(r⋆(q++) + Jk+16(ℓ3)) = ∅,(4.30)
Q∗∗(k; m) ∩ T h(r⋆⋆(q++) + Jk+16(ℓ3)) = ∅.(4.31)

Now, for every integer 1 − ℓ3 ⩽ h ⩽ qk+17 − 2 − ℓ3, we write

T h(r⋆(q++) + Jk+16(ℓ3)) = r(0)(ℓ3 + h) + Jk+16(ℓ3 + h),(4.32)

T h(r⋆⋆(q++) + Jk+16(ℓ3)) = r(1)(ℓ3 + h) + Jk+16(ℓ3 + h),(4.33)

T h(r2 + Jk+16(ℓ3)) = r(2)(ℓ3 + h) + Jk+16(ℓ3 + h).(4.34)

Clearly it follows from the assumption of Case 2B that r(0)(q), r(1)(q), r(2)(q)
form a permutation of 0, 1, 2 for every integer 1 ⩽ q ⩽ qk+17 − 2. Combin-
ing (4.27) and (4.30)–(4.34), we have

Q∗∗(k; m) ∩ (r(0)(q) + Jk+16(q)) = ∅,(4.35)

Q∗∗(k; m) ∩ (r(1)(q) + Jk+16(q)) = ∅,(4.36)

Q∗∗(k; m) ∩ (r(2)(q) + Jk+16(q)) = ∅,(4.37)

for every integer 1 ⩽ q ⩽ qk+17 − 2.
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Note now that (4.35)–(4.37) are similar to (4.7)–(4.9) in the proof of
Lemma 4.1, so we now mimic the last part of that proof.

By definition, the 3-copy extensions Jk+16(q; 3), 1 ⩽ q ⩽ qk+17 − 2, give
rise to 6 continuous chains of overlapping intervals in the torus/circle [0, 3)
such that the 6 chains completely cover the 6 intervals
(0, 1 − α), (1 − α, 1), (1, 2 − α), (2 − α, 2), (2, 3 − α), (3 − α, 3),
and there are only 6 points in [0, 3) that are not covered by the 6 chains,
namely

0, 1 − α, 1, 2 − α, 2, 3 − α.

Combining (4.35)–(4.37) for every integer 1 ⩽ q ⩽ qk+17 − 2, we deduce
that the set Q∗∗(k; m) is not covered by the 6 chains. Indeed, if m ⩾
2qk+1 + 2qk+9 + 2qk+17 + 7, then the set Q∗∗(k; m) has at least 7 distinct
elements, which is more than 6, giving rise to a contradiction. We conclude
therefore that, under the conditions of Case 2B, we must have m ⩽ 2qk+1 +
2qk+9 + 2qk+17 + 6, and this completes the proof. □

5. Proof of Theorem 1.1

Consider now an arbitrary finite polysquare translation surface P. We
are now in a position to complete the proof of Theorem 1.1, and show that
if the slope of a half-infinite geodesic on P is a badly approximable number,
then the geodesic is superdense on P.

The proof is a fairly straightforward adaptation of the proof of Theo-
rem 1.2, apart from the observation that the number of cases we need to
consider is a function of the number of square faces of P, and so can be
arbitrarily large.

Without loss of generality, we assume as before that the slope of the
half-infinite geodesic is greater than 1. Suppose that it has slope 1/α, where
0 < α < 1 is irrational.

Our first step is to generalize the interval exchange transformation T =
Tα defined in Section 2. Suppose that the polysquare translation surface P
has s square faces. Each square face has a top horizontal edge and a bottom
horizontal edge. Each top horizontal edge is identified with a unique bottom
horizontal edge, and these give rise to s horizontal edges h1, h2, . . . , hs. We
now identify these horizontal edges with unit intervals by making use of
the correspondences

h1 = [0, 1), h2 = [1, 2), . . . , hs = [s − 1, s).
We now consider the piecewise linear map T = Tα defined according to

the analog of Figure 2.2 that corresponds to P. More precisely, for each
integer 1 ⩽ j ⩽ s, there exist unique integers 0 ⩽ j′, j′′ ⩽ s − 1 such that

T ([j − 1, j − α)) = [j′ + α, j′ + 1) and T ([j − α, j)) = [j′′, j′′ + α).
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Indeed, it is not difficult to see that the map T : [0, s) → [0, s) is one-to-
one and onto. While T acts on the longer interval [0, s) instead of the unit
interval [0, 1), if we consider T modulo 1, then it acts simply as an α-shift,
or irrational rotation, in the unit interval.

As before, our main idea involves continued fractions, in particular, the
special case of the 3-distance theorem which becomes a 2-distance theorem.
Indeed, we can repeat our discussion at the beginning of Section 3 verbatim
up to the end of the paragraph preceeding (3.7). In particular, for any
integer 1 ⩽ q ⩽ qk+1 −2, we can define the special interval Jk(q) as in (3.5).
Then analogous to (3.7), for any integer 1 ⩽ q ⩽ qk+1 − 2, we define its
s-copy extension Jk(q; s) by

Jk(q; s) = Jk(q) ∪ (1 + Jk(q)) ∪ . . . ∪ ((s − 1) + Jk(q)) ⊂ [0, s),
a union of Jk(q) with s − 1 of its translates.

Let Lα(t) = Lα(P; S; t), t ⩾ 0, be a parametrized half-infinite geo-
desic on P with initial point S and slope 1/α, under the usual arc-length
parametrization.

Let M be large, and consider the initial segment Lα(t), 0 ⩽ t ⩽ M , of
length M , which we denote by (Lα; M). Suppose that
(5.1) 0 ⩽ t1 < t2 < t3 < . . . < tm ⩽ M,

where
(5.2) ti+1 − ti =

√
1 + α2, 1 ⩽ i ⩽ m − 1,

is the sequence of time instances t when the initial segment Lα(t), 0 ⩽ t ⩽
M , intersects the union h1 ∪ . . . ∪ hs = [0, s) of the s horizontal edges of
the polysquare translation surface P. For notational simplicity let
(5.3) yi = Lα(ti) ∈ [0, s), 1 ⩽ i ⩽ m,

denote these intersection points.
Using the interval exchange transformation T = Tα : [0, s) → [0, s), we

see that any two time-consecutive intersection points are governed by the
simple relation

T (yi) = yi+1, 1 ⩽ i ⩽ m − 1.

We have the following analog of Lemma 3.1 which is easily established
by the T -power extension argument.

Lemma 5.1. Suppose that Jk(ℓ1) is a special interval of the form (3.5),
and there exists r(ℓ1) ∈ {0, 1, . . . , s − 1} such that
(5.4) {yi : 1 ⩽ i ⩽ m} ∩ (r(ℓ1) + Jk(ℓ1)) = ∅,

where {yi : 1 ⩽ i ⩽ m} is the set of intersection points defined in (5.3).
Then for every integer 1 − ℓ1 ⩽ h ⩽ qk+1 − 2 − ℓ1, we have
(5.5) {yi : qk+1 ⩽ i ⩽ m − qk+1} ∩ T h(r(ℓ1) + Jk(ℓ1)) = ∅.
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For notational convenience, for every integer 1 − ℓ1 ⩽ h ⩽ qk+1 − 2 − ℓ1,
we write

(5.6) T h(r(ℓ1) + Jk(ℓ1)) = r
(0)
1 (ℓ1 + h) + Jk(ℓ1 + h).

Note that (5.6) defines r(q) for every integer 1 ⩽ q ⩽ qk+1−2. Furthermore,
combining (5.5) and (5.6), we have

(5.7) {yi : qk+1 ⩽ i ⩽ m − qk+1} ∩ (r(0)
1 (q) + Jk(q)) = ∅

for every integer 1 ⩽ q ⩽ qk+1 − 2.
Suppose that I0 ⊂ [0, s) is (Lα; M)-free, so that

{yi : 1 ⩽ i ⩽ m} ∩ I0 = ∅,

where {yi : 1 ⩽ i ⩽ m} is the set of intersection points defined in (5.3).
Let k be an integer, and suppose that Jk(ℓ1) is a special interval of the
form (3.5), and there exists r(ℓ1) ∈ {0, 1, . . . , s − 1} such that

(5.8) r(ℓ1) + Jk(ℓ1) ⊂ I0.

Then (5.4) holds. As before, we shall later choose an optimal value of k for
which (5.8) holds.

Again, we distinguish a few cases according to the special relations be-
tween various sets of intersection points and various special intervals. We
take advantage of the substantial overlapping of the short special intervals
Jk(q) defined by (3.5).

Recall that if 1 ⩽ q′, q′′ ⩽ qk+1 − 2 are two integers such that {q′α} and
{q′′α} are neighboring points in the partition Ak(α), then the intersection
Jk(q′) ∩ Jk(q′′) must contain a special interval of the type Jk+8(q) for some
1 ⩽ q ⩽ qk+9 − 2. We split the argument into two complementary cases.

Write
Q(k; m) = {yi : qk+1 ⩽ i ⩽ m − qk+1}.

Case 1A. The following intersection property holds. For every

Jk+8(ℓ) ⊂ Jk(q) and r ∈ {0, 1, . . . , s − 1},

with r ̸= r
(0)
1 (q) given by (5.6), we have

Q(k; m) ∩ (r + Jk+8(ℓ)) ̸= ∅.

Case 1B. There exist

Jk+8(ℓ2) ⊂ Jk(q(1)) and r1 ∈ {0, 1, . . . , s − 1},

with r1 ̸= r
(0)
1 (q(1)) given by (5.6), such that

(5.9) Q(k; m) ∩ (r1 + Jk+8(ℓ2)) = ∅.
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Since Jk+8(ℓ2) ⊂ Jk(q(1)), it clearly follows from (5.7) that

(5.10) Q(k; m) ∩ (r(0)
1 (q(1)) + Jk+8(ℓ2)) = ∅.

Since (5.9) and (5.10) are analogs of (5.4), the T -power expansion argument
shows that for every integer 1 − ℓ2 ⩽ h ⩽ qk+9 − 2 − ℓ2, we have

Q(1)(k; m) ∩ T h(r1 + Jk+8(ℓ2)) = ∅,(5.11)

Q(1)(k; m) ∩ T h(r(0)
1 (q(1)) + Jk+8(ℓ2)) = ∅,(5.12)

where, corresponding to Q∗(k; m) in Section 4, we write

Q(1)(k; m) = {yi : qk+1 + qk+9 ⩽ i ⩽ m − qk+1 − qk+9}.

For notational convenience, for every integer 1 − ℓ2 ⩽ h ⩽ qk+9 − 2 − ℓ2, we
write

T h(r(0)
1 (q(1)) + Jk+8(ℓ2)) = r

(0)
2 (ℓ2 + h) + Jk+8(ℓ2 + h),(5.13)

T h(r1 + Jk+8(ℓ2)) = r
(1)
2 (ℓ2 + h) + Jk+8(ℓ2 + h).(5.14)

Then combining (5.11)–(5.14), we have

Q(1)(k; m) ∩ (r(0)
2 (q) + Jk+8(q)) = ∅,(5.15)

Q(1)(k; m) ∩ (r(1)
2 (q) + Jk+8(q)) = ∅,(5.16)

for every integer 1 ⩽ q ⩽ qk+9 − 2. Clearly

r
(0)
2 (q) ̸= r

(1)
2 (q), 1 ⩽ q ⩽ qk+9 − 2.

We now split Case 1B into two complementary cases.

Case 2A. The following intersection property holds. For every
Jk+16(ℓ) ⊂ Jk+8(q) and r ∈ {0, 1, . . . , s − 1},

with r ̸= r
(0)
2 (q), r

(1)
2 (q) given by (5.13) and (5.14), we have

Q(1)(k; m) ∩ (r + Jk+16(ℓ)) ̸= ∅.

Case 2B. There exist
Jk+16(ℓ3) ⊂ Jk+8(q(2)) and r2 ∈ {0, 1, . . . , s − 1},

with r2 ̸= r
(0)
2 (q(2)), r

(1)
2 (q(2)) given by (5.13) and (5.14), such that

(5.17) Q(1)(k; m) ∩ (r2 + Jk+16(ℓ3)) = ∅.

Since Jk+16(ℓ3) ⊂ Jk+8(q(2)), it clearly follows from (5.15) and (5.16)
that

Q(1)(k; m) ∩ (r(0)
2 (q(2)) + Jk+16(ℓ3)) = ∅,(5.18)

Q(1)(k; m) ∩ (r(1)
2 (q(2)) + Jk+16(ℓ3)) = ∅.(5.19)
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Since (5.17)–(5.19) are analogs of (5.4), the T -power expansion argument
shows that for every integer 1 − ℓ3 ⩽ h ⩽ qk+17 − 2 − ℓ3, we have

Q(2)(k; m) ∩ T h(r2 + Jk+16(ℓ3)) = ∅,(5.20)

Q(2)(k; m) ∩ T h(r(0)
2 (q(2)) + Jk+16(ℓ3)) = ∅,(5.21)

Q(2)(k; m) ∩ T h(r(1)
2 (q(2)) + Jk+16(ℓ3)) = ∅,(5.22)

where, corresponding to Q∗∗(k; m) in Section 4, we write

Q(2)(k; m) = {yi : qk+1 + qk+9 + qk+17 ⩽ i ⩽ m − qk+1 − qk+9 − qk+17}.

For notational convenience, for every integer 1 − ℓ3 ⩽ h ⩽ qk+17 − 2 − ℓ3,
we write

T h(r(0)
2 (q(2)) + Jk+16(ℓ3)) = r

(0)
3 (ℓ3 + h) + Jk+16(ℓ3 + h),(5.23)

T h(r(1)
2 (q(2)) + Jk+16(ℓ3)) = r

(1)
3 (ℓ3 + h) + Jk+16(ℓ3 + h),(5.24)

T h(r2 + Jk+16(ℓ3)) = r
(2)
3 (ℓ3 + h) + Jk+16(ℓ3 + h).(5.25)

Then combining (5.20)–(5.25), we have

Q(2)(k; m) ∩ (r(0)
3 (q) + Jk+16(q) = ∅,

Q(2)(k; m) ∩ (r(1)
3 (q) + Jk+16(q) = ∅,

Q(2)(k; m) ∩ (r(2)
3 (q) + Jk+16(q) = ∅,

for every integer 1 ⩽ q ⩽ qk+17 − 2. Clearly

r
(0)
3 (q), r

(1)
3 (q), r

(2)
3 (q) are distinct, 1 ⩽ q ⩽ qk+17 − 2.

We now split Case 2B into two complementary cases.

Case 3A. The following intersection property holds. For every

Jk+24(ℓ) ⊂ Jk+16(q) and r ∈ {0, 1, . . . , s − 1},

with r ̸= r
(0)
3 (q), r

(1)
3 (q), r

(2)
3 (q) given by (5.23)–(5.25), we have

Q(2)(k; m) ∩ (r + Jk+24(ℓ)) ̸= ∅.

Case 3B. There exist

Jk+24(ℓ4) ⊂ Jk+16(q(3)) and r3 ∈ {0, 1, . . . , s − 1},

with r3 ̸= r
(0)
3 (q), r

(1)
3 (q), r

(2)
3 (q) given by (5.23)–(5.25), such that

Q(2)(k; m) ∩ (r3 + Jk+24(ℓ4)) = ∅.
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Suppose that 1 ⩽ τ ⩽ s − 2. Assume that for every integer 1 ⩽ q ⩽
qk+8τ−7 − 2, there are distinct integers

(5.26) r(0)
τ (q), . . . , r(τ−1)

τ (q) ∈ {0, 1, . . . , s − 1}
such that for every integer 1 ⩽ j ⩽ τ ,
(5.27) Q(τ−1)(k; m) ∩ (r(j−1)

τ (q) + Jk+8τ−8(q)) = ∅
for every integer 1 ⩽ q ⩽ qk+8τ−7 − 2, where

Q(τ−1)(k; m) =
{

yi :
τ∑

u=1
qk+8u−7 ⩽ i ⩽ m −

τ∑
u=1

qk+8u−7

}
.

Assume further that we have two complementary cases.

Case τA. The following intersection property holds. For every
Jk+8τ (ℓ) ⊂ Jk+8τ−8(q) and r ∈ {0, 1, . . . , s − 1},

with r ̸= r
(0)
τ (q), . . . , r

(τ−1)
τ (q) given by (5.26), we have

Q(τ−1)(k; m) ∩ (r + Jk+8τ (ℓ)) ̸= ∅.

Case τB. There exist
Jk+8τ (ℓτ+1) ⊂ Jk+8τ−8(q(τ)) and rτ ∈ {0, 1, . . . , s − 1},

with rτ ̸= r
(0)
τ (q), . . . , r

(τ−1)
τ (q) given by (5.26), such that

(5.28) Q(τ−1)(k; m) ∩ (rτ + Jk+8τ (ℓτ+1)) = ∅.

Since Jk+8τ (ℓτ+1) ⊂ Jk+8τ−8(q(τ)), it clearly follows from (5.27) that for
every integer 1 ⩽ j ⩽ τ ,
(5.29) Q(τ−1)(k; m) ∩ (r(j−1)

τ (q(τ)) + Jk+8τ (ℓτ+1)) = ∅.

Since (5.28) and (5.29) are analogs of (5.4), the T -power expansion argu-
ment shows that for every integer 1 − ℓτ+1 ⩽ h ⩽ qk+8τ+1 − 2 − ℓτ+1, we
have
(5.30) Q(τ)(k; m) ∩ T h(rτ + Jk+8τ (ℓτ+1)) = ∅,

as well as
(5.31) Q(τ)(k; m) ∩ T h(r(j−1)

τ (q(τ)) + Jk+8τ (ℓτ+1)) = ∅
for every integer 1 ⩽ j ⩽ τ , where

Q(τ)(k; m) =
{

yi :
τ+1∑
u=1

qk+8u−7 ⩽ i ⩽ m −
τ+1∑
u=1

qk+8u−7

}
.

For notational convenience, for every integer 1 − ℓτ+1 ⩽ h ⩽ qk+8τ+1 − 2 −
ℓτ+1, we write

(5.32) T h(r(j−1)
τ (q(τ)) + Jk+8τ (ℓτ+1)) = r

(j−1)
τ+1 (ℓτ+1 + h) + Jk+8τ (ℓτ+1 + h)
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for every integer 1 ⩽ j ⩽ τ , and also write

(5.33) T h(rτ + Jk+8τ (ℓτ+1)) = r
(τ)
τ+1(ℓτ+1 + h) + Jk+8τ (ℓτ+1 + h).

Then combining (5.30)–(5.33), we have, for every integer 1 ⩽ j ⩽ τ + 1,

Q(τ)(k; m) ∩ (r(j−1)
τ+1 (q) + Jk+8τ (q)) = ∅

for every integer 1 ⩽ q ⩽ qk+8τ+1 − 2. Clearly

r
(0)
τ+1(q), . . . , r

(τ)
τ+1(q) are distinct, 1 ⩽ q ⩽ qk+8τ+1 − 2.

We now split Case τB into two complementary cases.

Case (τ + 1)A. The following intersection property holds. For every

Jk+8τ+8(ℓ) ⊂ Jk+8τ (q) and r ∈ {0, 1, . . . , s − 1},

with r ̸= r
(0)
τ+1(q), . . . , r

(τ)
τ+1(q) given by (5.32) and (5.33), we have

Q(τ)(k; m) ∩ (r + Jk+8τ+8(ℓ)) ̸= ∅.

Case (τ + 1)B. There exist

Jk+8τ+8(ℓτ+2) ⊂ Jk+8τ (q(τ+1)) and rτ+1 ∈ {0, 1, . . . , s − 1},

with rτ+1 ̸= r
(0)
τ+1(q), . . . , r

(τ)
τ+1(q) given by (5.32) and (5.33), such that

Q(τ)(k; m) ∩ (rτ+1 + Jk+8τ+8(ℓτ+2)) = ∅.

In particular, if τ = s − 2, we have the following final case.

Case (s − 1)B. There exist

Jk+8s−8(ℓs) ⊂ Jk+8s−16(q(s−1)) and rs−1 ∈ {0, 1, . . . , s − 1},

with rs−1 ̸= r
(0)
s−1(q(s−1)), . . . , r

(s−2)
s−1 (q(s−1)) given by (5.32) and (5.33) in

the special case τ = s − 2, such that

(5.34) Q(s−2)(k; m) ∩ (rs−1 + Jk+8s−8(ℓs)) = ∅.

Lemma 5.2. For every τ = 1, . . . , s − 1, Case τA is impossible.

Lemma 5.3. If Case (s − 1)B holds, then

(5.35) m ⩽ 2s + 2
s∑

u=1
qk+8u−7.



538 József Beck, William W. L. Chen

Before we prove Lemmas 5.2 and 5.3, we first complete the proof of
Theorem 1.1.

Proof of Theorem 1.1. Suppose that I0 ⊂ [0, s) is (Lα; M)-free, so that
{yi : 1 ⩽ i ⩽ m} ∩ I0 = ∅.

Let Jk(ℓ1) = J(α; k; ℓ1) be the longest special interval of the form (3.5)
such that

r(ℓ1) + Jk(ℓ1) ⊂ I0 for some ℓ1 and r(ℓ1) ∈ {0, 1, . . . , s − 1}.

Then we can show as before that

(5.36) length(I0) <
8
qk

.

On the other hand, it follows from (5.1) and (5.2) that

(5.37) M ⩽ (m + 1)
√

1 + α2.

Also, in view of Lemmas 5.2 and 5.3, it is clear that the bound (5.35) holds.
Finally, the inequalities (3.33) are replaced by the inequalities
(5.38) qk+1 < qk+9 < . . . < qk+8s−7 ⩽ (A + 1)8s−7qk.

Combining (5.35), (5.37) and (5.38), we see that

(5.39) M ⩽

(
2s + 1 + 2

s∑
u=1

qk+8u−7

)√
1 + α2 < (4s+1)(A+1)8s−7qk

√
2.

It now follows from (5.36) and (5.39) that a geodesic segment Lα(t),
0 ⩽ t ⩽ M , of length M = (4s + 1)(A + 1)8s−7qk

√
2 must intersect every

subinterval I of h1 ∪ . . . ∪ hs with length(I) = 8/qk. Since the product
M length(I) is a constant independent of k, this establishes superdensity
of the half-infinite geodesic. □

It remains to prove Lemmas 5.2 and 5.3.

Proof of Lemma 5.2. We can proceed along similar lines as in the first part
of the proof of Lemma 3.2, and show that any two neighboring s-copy ex-
tensions Jk+8τ−8(q′; s) and Jk+8τ−8(q′′; s) are synchronized in the following
precise sense: For each r ∈ {0, 1, . . . , s − 1}, we have

Q(τ−1)(k; m) ∩ (r + Jk+8τ−8(q′)) = ∅
if and only if

Q(τ−1)(k; m) ∩ (r + Jk+8τ−8(q′′)) = ∅.

By definition, the s-copy extensions Jk+8τ−8(q; s), 1 ⩽ q ⩽ qk+8τ−7 − 2,
give rise to 2s continuous chains of overlapping intervals in the torus/circle
[0, s) such that the 2s chains completely cover the 2s intervals
(5.40) [0, 1 − α), [1 − α, 1), . . . , [s − 1, s − α), [s − α, s).
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The synchronization property now implies that each of the 2s long spe-
cial intervals in (5.40) satisfies one of the following two properties. Either
such a long special interval is disjoint from the set Q(τ−1)(k; m), or the
set Q(τ−1)(k; m) is dense in such a long special interval, in the precise
sense that every subinterval of length 1/qk+8s contains a point from the set
Q(τ−1)(k; m).

Moreover, it is not difficult to show that precisely 2τ of the 2s long special
intervals in (5.40) are disjoint from the set Q(τ−1)(k; m). To see this, choose
two integers q′ and q′′ satisfying 1 ⩽ q′, q′′ ⩽ qk+8τ−7 − 2 such that

(5.41) Jk+8τ−8(q′) ⊂ (0, 1 − α) and Jk+8τ−8(q′′) ⊂ (1 − α, 1).

Then it follows from (5.27) that for every integer 1 ⩽ j ⩽ τ ,

Q(τ−1)(k; m) ∩ (r(j−1)
τ (q′) + Jk+8τ−8(q′)) = ∅,(5.42)

Q(τ−1)(k; m) ∩ (r(j−1)
τ (q′′) + Jk+8τ−8(q′′)) = ∅.(5.43)

For every integer 1 ⩽ j ⩽ τ , now write

(5.44) I2j−1 = r(j−1)
τ (q′) + (0, 1 − α) and I2j = r(j−1)

τ (q′′) + (1 − α, 1).

The synchronization property and (5.41)–(5.44) now imply that for every
integer 1 ⩽ j ⩽ τ , we have

Q(τ−1)(k; m) ∩ I2j−1 = ∅ and Q(τ−1)(k; m) ∩ I2j = ∅.

Note that the union I1 ∪ . . . ∪ I2τ modulo 1 is precisely the unit interval
[0, 1) taken τ times.

Now I1, . . . , I2τ are 2τ of the 2s long special intervals in (5.40). Let
the remaining long special intervals in (5.40) be denoted by I2j−1 and I2j ,
τ < j ⩽ s. The condition of Case τA now implies that these 2s−2τ intervals
are not disjoint from Q(τ−1)(k; m), so that Q(τ−1)(k; m) is dense in each of
them.

Each T -image T (I2j−1) and T (I2j), 1 ⩽ j ⩽ τ , has at most 1 common
point with the set Q(τ−1)(k; m). This is a contradiction, since the union

T (I1) ∪ . . .) ∪ T (I2τ )

has a substantial intersection with the union I2τ+1 ∪ . . .∪I2s, which implies
that it must have a substantial intersection with the set Q(τ−1)(k; m), much
more than at most 2τ elements. Thus Case τA is impossible, and this
completes the proof. □
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Proof of Lemma 5.3. Since (5.34) is an analog of (5.4), we can repeat the
T -power extension argument and conclude that for every integer 1 − ℓs ⩽
h ⩽ qk+8s−7 − 2 − ℓs, we have

(5.45) Q(s−1)(k; m) ∩ T h(rs−1 + Jk+8s−8(ℓs)) = ∅.

Since Jk+8s−8(ℓs) ⊂ Jk+8s−16(q(s−1)), it follows from (5.27) with τ = s − 1
that for every integer 1 ⩽ j ⩽ s − 1,

(5.46) Q(s−2)(k; m) ∩ (r(j−1)
s−1 (q(s−1)) + Jk+8s−8(ℓs)) = ∅.

Next, note that (5.46) are also analogs of (5.4), so again we can repeat the
T -power extension argument and conclude that for every integer 1 ⩽ j ⩽
s − 1, and for every integer 1 − ℓs ⩽ h ⩽ qk+8s−7 − 2 − ℓs, we have

(5.47) Q(s−1)(k; m) ∩ T h(r(j−1)
s−1 (q(s−1)) + Jk+8s−8(ℓs)) = ∅.

Now, for every integer 1 − ℓs ⩽ h ⩽ qk+8s−7 − 2 − ℓs, we write

(5.48) T h(r(j−1)
s−1 (q(s−1)) + Jk+8s−8(ℓs)) = r(j−1)(ℓs + h) + Jk+8s−8(ℓs + h)

for every integer 1 ⩽ j ⩽ s − 1, and also write

(5.49) T h(rs−1 + Jk+8s−8(ℓs)) = r(s−1)(ℓs + h) + Jk+8s−8(ℓs + h).
Clearly it follows from the assumption of Case (s − 1)B that

r(0)(q), . . . , r(s−1)(q)
form a permutation of 0, 1, . . . , s − 1 for every integer 1 ⩽ q ⩽ qk+8s−7 − 2.
Combining (5.45) and (5.47)–(5.49), we have, for every integer 1 ⩽ j ⩽ s,

(5.50) Q(P −1)(k; m) ∩ (r(j−1)(q) + Jk+8s−8(q)) = ∅
for every integer 1 ⩽ q ⩽ qk+8s−7 − 2.

Note now that (5.50) are similar to (4.7)–(4.9) in the proof of Lemma 4.1,
so we now mimic the last part of that proof.

By definition, the s-copy extensions Jk+8s−8(q; s), 1 ⩽ q ⩽ qk+8s−7 − 2,
give rise to 2s continuous chains of overlapping intervals in the torus/circle
[0, s) such that the 2s chains completely cover the 2s intervals

[0, 1 − α), [1 − α, 1), . . . , [s − 1, s − α), [s − α, s),
and there are only 2s points in [0, s) that are not covered by the 2s chains,
namely

j − 1, j − α, 1 ⩽ j ⩽ s.

Combining (5.50) for every integer 1 ⩽ q ⩽ qk+8s−7 − 2, we deduce that
the set Q(s−1)(k; m) is not covered by the 2s chains. Indeed, if

m ⩾ 2s + 1 + 2
s∑

u=1
qk+8u−7,
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then the set Q(s−1)(k; m) has at least 2s + 1 distinct elements, which is
more than 2s, giving rise to a contradiction. We conclude therefore that,
under the conditions of Case (s − 1)B, we must have

m ⩽ 2s + 2
s∑

u=1
qk+8u−7,

and this completes the proof. □

6. A dynamical systems approach

Consider general translation surfaces, i.e., polygons or finite sets of poly-
gons on the plane such that each side of a polygon is identified with a
parallel side by translation. There is a long history of links between the dy-
namical systems on individual translation surfaces and a dynamical system
on the moduli space of translation surfaces, and between the linear flow on
a translation surface and geodesic flow on the moduli space. Central to this
is Masur’s criterion on unique ergodicity which is built on his earlier work
with Kerckhoff and Smillie; see [6, 9, 10].

Since the appearance of an earlier version of this paper on arXiv,
Southerland [14] has studied the problem involving general translation sur-
faces and established a beautiful geometric result that a linear flow on a
translation surface is superdense if and only if the associated Teichmüller
geodesic trajectory is bounded in the moduli space. This raises the question
of the relationship between the boundedness of the associated Teichmüller
geodesic trajectory in the moduli space and the arithmetic properties of
the slope of the linear flow on the translation surface.

This relationship is rather unclear other than what is evidenced on finite
polysquare translation surfaces and what happens in the moduli space of
tori. Does the set of slopes that lead to superdense linear flow on a trans-
lation surface change if the surface looks less like a finite polysquare trans-
lation surface? Is the torus, and by extension, finite polysquare translation
surfaces maximal in some sense?
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