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Rational points on symmetric squares of constant
algebraic curves over function fields

par Jennifer BERG et José Felipe VOLOCH

Résumé. On considère des courbes projectives lisses C/F sur un corps fini
et leurs carrés symétriques C(2). Pour un corps de fonctions global K/F,
nous étudions les points K-rationnels de C(2). Nous décrivons les points adé-
liques de C(2) survivant à la descente de Frobenius et décrivons comment les
points K-rationnels y sont situés. Nos méthodes conduisent également à une
borne explicite pour le nombre de points K-rationnels de C(2) satisfaisant une
condition supplémentaire. Certains de nos résultats s’appliquent à des sous-
variétés constantes arbitraires de variétés abéliennes, mais nous produisons
des exemples qui montrent que certaines des nos conclusions les plus fortes ne
s’étendent pas.

Abstract. We consider smooth projective curves C/F over a finite field and
their symmetric squares C(2). For a global function field K/F, we study the
K-rational points of C(2). We describe the adelic points of C(2) surviving
Frobenius descent and how the K-rational points fit there. Our methods also
lead to an explicit bound on the number of K-rational points of C(2) satisfy-
ing an additional condition. Some of our results apply to arbitrary constant
subvarieties of abelian varieties, however we produce examples which show
that not all of our stronger conclusions extend.

1. Introduction
Let C be a smooth, geometrically irreducible, proper curve over a finite

field F, and let K/F be a global function field. In this paper, we study the
set of K-rational points of the symmetric square X = C(2) and explore
the information that can be obtained about X(K) from knowledge of only
certain finite coverings of X. We also discuss to what extent our results
extend to the case of a constant subvariety of a constant abelian variety.

To provide some context, we briefly recall what is known about the
K-rational points of a nice curve C/K, assumed to be of genus g ≥ 2,
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embedded in its Jacobian J , and with X(J) finite. In [12, Theorem 4.4]
the Brauer–Manin obstruction is shown to be the only obstruction to weak
approximation for curves over K, i.e., C(K) = C(AK)Br, with C satisfy-
ing additional but general hypotheses which exclude the case of constant
curves.

However, when C is a nice constant curve (or abelian variety), the
Brauer–Manin obstruction is equivalent to descent under finite abelian
group schemes, and in particular C(AK)Br = C(AK)ab = C(AK)isog [5,
Section 2]. Thus in [6], Creutz and Voloch study C(K) via descent un-
der pull-backs of étale isogenies on Jac(C) defined over F together with
Frobenius descent. It is shown that C(AK)F ∞ = C(K) ∪ C(AK,F), that
is, any adelic point of C unobstructed by descent under the nth iterate of
the F-Frobenius isogeny on F : J → J for all n ≥ 1 is global, unless it is
arbitrarily divisible by Frobenius [6, Theorem 1.2] and the latter consists
of adelic points with constant components. Moreover, writing K = F(D)
for a nice curve D over F, if the genus of D is less than that of C, then
C(AK)Br = C(K) = C(F) [6, Theorem 1.5].

Less is known about the precise relationship between finite descent ob-
structions and the Brauer–Manin obstruction for higher dimensional con-
stant subvarieties X of abelian varieties, (see Section 3.5 for further re-
marks). Still, it is reasonable to ask what information about X(K) can
be deduced from descent under torsors arising as pullbacks from isogenies
on the abelian variety, and specifically from Frobenius descents. Moreover,
Frobenius descent is interesting in its own right since it can be viewed in
analogy to the differential descent obstruction in characteristic 0 [10, 15].

1.1. Results for symmetric squares of constant curves over func-
tion fields. Let C and D be smooth, proper curves over a finite field F
and set K = F(D). We note that C may be embedded into its Jacobian J
since, by the Hasse–Weil bounds, C has a 0-cycle of degree 1 defined over
F. We study the K-rational points on the image of the symmetric square
C(2) in J , parametrizing effective divisors of degree 2 on C.

An adelic point on a variety X surviving Frobenius descent defines a
class in H1(K, ker(F )) which can be related to tangent spaces of the corre-
sponding variety X, see Section 3.1. Thus the setting of symmetric powers
of a curve is particularly amenable to studying the information captured
by the Frobenius descent obstruction since the local geometry of X = C(2)

is well understood. In particular, there is an explicit description of the
projectivized tangent space to points of X in terms of secant lines on the
canonically embedded curve in Pg−1

F . This perspective allows us to give
a precise description of the points of C(2) surviving Frobenius descent in
terms of geometric information about C. Specifically, we prove:
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Theorem 1.1 (Theorem 3.5). Let C be a smooth curve of genus g and
assume that C has no g1

2, g1
3, nor g1

4. Let Z ⊂ X(AK) be the subset of
adelic points represented by degree 2 effective divisors on C of the form
y + (Qv) where y ∈ C(K) and (Qv) ∈ C(AK,F). Then the subset of adelic
points of X unobstructed by Frobenius descent is

X(AK)F ∞ = X(K) ∪ X(AK,F) ∪ Z.

The first two sets in the description of the points unobstructed by Frobe-
nius descent, namely X(K) and X(AK,F), are entirely analogous to the cor-
responding sets in the case of curves, proved in [6] and discussed above. The
set Z is a mix between the two, that is, adelic divisors of degree two which
are a sum of a global point on C and an adelic point of C with constant
components. The reason for the assumption on the non-existence of special
divisors of low degree will become clear in the discussion of the proof of the
Theorem.

The proof of Theorem 3.5 allows us to determine an explicit bound on the
number of K-rational points of X satisfying certain geometric conditions,
namely that the corresponding curves are not everywhere tangent to the
“horizontal” direction. This is made precise in the discussion immediately
preceding Theorem 3.6, which gives the explicit statement. As far as the
authors know, even the corresponding finiteness statement is new.

While a few questions remain, the situation for the symmetric square
is fairly clear. In contrast, for arbitrary constant surfaces (or higher di-
mensional varieties) contained in abelian varieties, the situation is murkier.
We give constructions in Section 3.3 of non-global points unobstructed by
Frobenius descent.

2. Notation and Background
Let F be a finite field of characteristic p and let D be a smooth, proper

curve over F. Set K = F(D). The places of K are in bijection with the set
D1 of closed points of D. Given a closed point v ∈ D1, let Kv, Ov, and
Fv denote the corresponding completion of K, ring of integers, and residue
field, respectively.

Throughout this note we shall let X denote a proper geometrically inte-
gral F-variety and XK := X ⊗K F. Recall that a variety over K is called
constant if it is isomorphic to the base change of a variety defined over F
and is called isotrivial if it becomes constant over some finite extension of
K. Note that we can make the identifications

XK(K) = X(K) = MorF(Spec(K), X) = MorF(D, X),

therefore when we consider a K-rational point of X, it will be convenient
to also keep in mind the existence of a morphism f : D → X.
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2.1. Adelic and reduced adelic points. The adele ring of K is the K-
algebra defined by the restricted direct product AK :=

∏
v∈D1(Kv : Ov),

where the product runs over the closed points of D. Since X is proper, we
may identify X(AK) = XK(AK) =

∏
v∈D1 X(Kv).

The reduced adele ring of K is the F-algebra AK,F =
∏

v∈D1 Fv, which
is an F-subalgebra of AK . The set X(AK,F) := MorF(Spec(AK,F), X) of re-
duced adelic points on X is a closed subset of X(AK) which can be identi-
fied with

∏
v∈D1 X(Fv). When the latter is endowed with the product of the

discrete topologies it coincides with the subspace topology determined by
X(AK,F) ⊂ X(AK). Such points play an important role in the description
of various descent obstructions on constant curves and are still necessary to
consider for higher dimensional subvarieties of constant abelian varieties.

2.2. Descent Obstructions. Consider the category Cov(XK) of XK-
torsors under finite group schemes G over K for the flat topology; for a
detailed account, see [14, Section 4]. We say that an adelic point P ∈
XK(AK) = X(AK) is unobstructed by, or survives, the torsor (X ′, G) ∈
Cov(XK) if it lifts to an adelic point on some twist of (X ′, G). Equiva-
lently, P survives (X ′, G) if the element of

∏
v H1(Kv, G) given by evalu-

ating (X ′, G) at P lies in the image of H1(K, G) under the usual diagonal
map in bottom row of the following diagram.

X(K) H1(K, G)

X(AK)
∏

v H1(Kv, G)

Throughout this note, we restrict our attention to subvarieties X of an
abelian variety A/F. Furthermore, we will consider the subset of torsors in
Cov(XK) which arise as pullbacks of isogenies ϕ : A′ → A defined over F.

The Frobenius isogeny on A will be of particular importance in subse-
quent sections. Since A is defined over F, recall that there exists an F-
Frobenius morphism A → A defined by the n-fold composition (where
F = Fpn) of Fp-Frobenius morphism with itself. Since we will be interested
in isogenies with target A, it is convenient to consider the Fp-Frobenius
morphism denoted F : A(1/p) → A(pn) ∼= A, given by raising coordinates to
their pth powers and, Zariski locally, defining equations for A are obtained
from those of A(1/p) by taking pth powers.

Specifically, we will consider the torsor (X ′, ker(F )) under the finite
abelian F-group scheme G = ker(F ). Recall that for a separable exten-
sion L/K, the long exact sequence in cohomology arising from the short
exact sequence of K-group schemes

0 → ker(F ) → A(1/p) F−→ A → 0
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gives rise to a homomorphism µ : A(L)/F (A(1/p)(L)) → H1(L, ker F ).
Thus, to say an adelic point (xv) ∈ X(AK) survives F -descent means there
exists a global element in H1(K, ker F ) such that its image in H1(Kv, ker F )
coincides with the image of xv under µ. To discern further information
about adelic points unobstructed by Frobenius descent, we make use of the
following lemma, originally due to Artin and Milne, [3], which describes µ
explicitly.

Lemma 2.1 ([6, Lemma 3.1]). There is a functorial (on separable ex-
tensions L/K) injection H1(L, ker F ) → Ω⊕g

L/F such that the induced map
A(L)/F (A(1/p)(L)) → Ω⊕g

L/F, obtained by composing with µ above, is given
by x 7→ x∗(ω1, . . . , ωg) where ω1, . . . , ωg is a basis of holomorphic differen-
tials on A.

We note that if L/K is a finite separable extension, then ΩL/F is a one-
dimensional vector space over L and we can then identify the projective
space P(Ω⊕g

L/F) with Pg−1(L).

3. Frobenius Descent Obstruction
In this section, we consider subvarieties X of constant abelian varieties A

containing adelic points (xv) ∈ X(AK) unobstructed by Frobenius descent.
When X is a smooth, proper, geometrically integral constant curve over K
embedded in its Jacobian J , Creutz and the second author proved that any
adelic point on X surviving a torsor (X ′, ker(F )) must be global, except
possibly if the torsor is F −1(X) ⊂ J , where F denotes the Fp-Frobenius
isogeny on J [6, Lemma 3.2]. We show that this need not be true for higher
dimensional subvarieties. To exhibit such counterexamples, we must first
consider a modified Gauss map for subvarieties of abelian varieties.

3.1. The Gauss map. Suppose that X is a smooth subvariety of an
abelian variety A of dimension g. The Frobenius descent map, denoted by µ
in [6, Lemma 3.1], assigns to a point in A(K), interpreted as a map D → A

over F, a map ΩA/K → Ω⊕g
K/F. As before, to say that a point (xv) ∈ X(AK)

survives Frobenius descent means that there exists an element ξ of Ω⊕g
K/F

such that for each place v of K, one has µKv (xv) = ξ∈ Ω⊕g
Kv/F for all v. In

this case, if ξ ̸= 0 we let γ : D → Pg−1
F denote the map corresponding to

the point [ξ] ∈ Pg−1
F . If ξ = 0, the adelic point factors through Frobenius.

If X has finite stabilizer in A, Abramovich proved that the Gauss map
X → Gr(dim X, dim A) is finite [1, Theorem 4]. In this case, the Gauss map
is the usual one, defined by sending a smooth point x ∈ X to the point on
the Grassmannian representing the tangent space of X at x inside of the
tangent space to A. This result holds in arbitrary characteristic. However,
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in the present context, we are impelled to use a variant of the Gauss map h
which has target Pg−1

F in order to meaningfully compare with the Frobenius
descent map µ. As a result, degeneracies of h arise in positive characteristic
that are not present for the usual Gauss map. These lead to interesting
examples, see Section 3.4.

In order to define h, we let P be the projectivized tangent bundle of
X, the variety with a map P → X such that the fiber at x in X is the
set of 1-dimensional subspaces of TxX. Note that dim P = 2 dim X − 1. By
translating such subspaces to the tangent space to A at the origin, we obtain
a map h : P → Pg−1

F = P(T0A). If A is the Jacobian of a non-hyperelliptic
curve C, we identify the projective space associated to the tangent space of
A at the origin with the ambient Pg−1

F in which C is canonically embedded.
Each xv ∈ X(Kv) gives a map Spec(Ov) → X. If this map has a non-
zero derivative, it induces a map Spec(Ov) → P . That is, in favorable
circumstances, from an adelic point of X one obtains an adelic point on P ,
and hence an adelic point on Pg−1

F by composing with the map h above for
each place v of K.

Remark 3.1. In the case when X = C is a non-hyperelliptic curve with an
embedding into its Jacobian, the map h coincides with the canonical em-
bedding ϕ : C → Pg−1

F . The existence of a point (xv) ∈ C(AK) unobstructed
by Frobenius descent gives that γ(D) = C. When X is a surface or higher
dimensional variety, we shall see that it is often less straightforward to
relate γ(D) to the image of h in Pg−1

F .

3.2. Frobenius descent on the symmetric square of a curve. In the
context of higher dimensional subvarieties of constant abelian varieties, a
reasonable setting in which to examine the Frobenius descent obstruction
is the image of symmetric powers of a curve in its Jacobian. Let C be a
smooth non-hyperelliptic curve of genus g > 3, and let X be the image in
J := Jac(C) of C(2), parametrizing effective divisors of degree 2 on C.

As above, let P be the projectivized tangent bundle of X. The Riemann–
Kempf Singularity Theorem [9],[7, Section 2.7] relates the local geometry
of X, specifically the tangent cones at various points, to the corresponding
geometry of the linear systems on the canonical curve of C in Pg−1

F . In
particular, the projectivized tangent space to C(2) at P0 + Q0 is identified
with the linear span of P0 and Q0 in Pg−1

F , i.e., the secant line between P0
and Q0 on the canonical curve. Thus, we have a map of threefolds, h : P →
S ⊂ Pg−1

F from P to the secant variety S of the canonically embedded curve
and we view C ⊂ S. Note that this is the same map h as above, but with
the target restricted to S.

We will show below in Lemma 3.2 that the map h is birational, hence
there exists an open set U ⊂ S where h has an inverse h−1. The set U can
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be interpreted as the set of points R in S for which there exists a unique
pair {Q, Q′} of distinct points of C with R ∈ QQ′, the secant line between
Q and Q′. The map h fails to be bijective at the locus of points where two
secant lines intersect. Observe that after fixing a point P0 ∈ C and varying
another point Q, the line P0Q passes through P0, hence h−1(P0) contains
a curve. By varying P0, we see that h−1(C) is a surface in P . Moreover
C ∩ U = ∅.

Lemma 3.2. Let C be a smooth non-hyperelliptic curve of genus g > 3.
Suppose that P1, P2, P3, P4 are distinct points on C. If two secant lines
between disjoint pairs of the images of these points on the canonical curve
in Pg−1

F intersect, then P1 + P2 + P3 + P4 is a g1
4. Moreover, if g > 4, the

map h above is birational and if, in addition, C has no g1
4, then h has an

inverse in S \ C.

Proof. Suppose that the lines P1P2 and P3P4 intersect at a point R in Pg−1
F .

Then the geometric form of Riemann Roch [2, p. 12] implies that the divisor
P1 + P2 + P3 + P4 on C is a g1

4. This proves the first part of the lemma.
By Martens’s theorem ([11], [2, Theorem IV.5.1]) under our assumptions,

the set of g1
4’s of C is at most one dimensional, so the set U above is open

and dense in S and h is invertible on U , hence birational. Finally, if C has
no g1

4 then U = S \ C. □

Remark 3.3. A more general statement that implies that h is birational
as in Lemma 3.2 is [2, Exercise VIII.A.2]

We shall give conditions on C that determine when an adelic point of X
surviving Frobenius descent is a global point.

Lemma 3.4. Let C be a smooth non-hyperelliptic curve of genus g and
let X be the image of C(2) in J = Jac(C). Let (xv) ∈ X(AK) be an adelic
point with µKv (xv) ̸= 0 for some v which survives Frobenius descent, and
write µ(xv) = ξ for some ξ ∈ H1(K, ker F ). Let γ : D → Pg−1

F be the
map corresponding to [µKv (xv)] = [ξ] ∈ Pg−1

F (K). If γ(D) ∩ U ̸= ∅, then
(xv) ∈ X(K).

Proof. Since any adelic point (xv) ∈ X(AK) lifts to an adelic point of P ,
by composing with the map h : P → S ⊂ Pg−1

F , we obtain an adelic point
of S. By assumption we have µ(xv) = [ξ], so this implies that γ(D) ⊂ S.

If γ(D) ⊂ S meets U , then we can form the map π ◦ h−1 ◦ γ : D → X,
where π : P → X is the projection. So γ comes from a point of X(K).
Indeed, this follows from the uniqueness condition in the description of U
given above, which guarantees that h−1 is well defined. □

If we further assume C has no g1
3, then the condition that γ(D) meets

U is enough to conclude that the adelic point is global. Together with this
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observation, we give the following description of adelic points surviving
Frobenius descent.

Theorem 3.5. Let C be a smooth curve of genus g and assume that C has
no g1

2, g1
3, nor g1

4. Let Z ⊂ X(AK) be the subset of adelic points represented
by degree 2 effective divisors on C of the form y + (Qv) where y ∈ C(K)
and (Qv) ∈ C(AK,F). Then the subset of adelic points of X unobstructed by
Frobenius descent is

X(AK)F ∞ = X(K) ∪ X(AK,F) ∪ Z.

Proof. Let (xv) ∈ X(AK)F ∞ so that in particular, it is an adelic point sur-
viving (X ′, ker F ). Suppose first that µKv (xv) ̸= 0 for some v. As before, we
write µ(xv) = ξ ∈ H1(K, ker F ) and let γ : D → Pg−1

F be the corresponding
map.

If γ(D) ̸= C, then by Lemma 3.2, since C contains no g1
4, we have

γ(D) ∩ U ̸= ∅. Thus by Lemma 3.4, we find (xv) ∈ X(K). If instead
γ(D) = C so that γ(D) is disjoint from U , we claim that (xv) ∈ Z. Since
γ(D) = C, it in fact defines a point Q of C(K). Therefore, if we write
(xv) = (Qv + Q′

v), then the observation that µKv (xv) = ξ ̸= 0 tells us that
Q is contained in the secant line QvQ′

v. Since C has no g1
3, C does not have

any trisecant lines and hence no point of C is on a secant line through two
other points of C. Thus, we recover from ξ a point Q of C(K) which occurs
in {Qv, Q′

v} for all v. One possibility is that Qv = Q′
v = Q for all v and the

point Qv + Q′
v of X is global. Let us fix Qv = Q and let Q′

v be the other
point, which may or may not be Q. Then we have an adelic point (Q′

v)
of C with a global value of µ. It is therefore either global itself (hence is
Q), or is in the image of Frobenius (when µ(Q′

v) = 0) by [6]. In the latter
case, we can write Q′

v = F n(Rv) for some n ≥ 1 and (Rv) ∈ C(AK). Since
we assume that (xv) ∈ X(AK)F ∞ , we get that (Rv) ∈ C(AK)F so by [6],
either (Rv) is global and, in turn, so are Q′

v, xv or (Rv) is in the image of
Frobenius. This shows that either xv is global or in Z, by [6, Theorem 1.2].

Otherwise, µKv (xv) = 0 for all v, which implies (xv) ∈ F (J (1/p)(AK)) and
thus lifts to a point (yv) ∈ X(1/p)(AK). The proof that any non-global such
(xv) is in X(AK,F) follows in the same manner as that of [6, Theorem 1.2],
but we record it here for completeness. Since X(K, ker(F )) = 0, (xv) does
not lift to any nontrivial twist of (X ′, ker F ). Hence (yv) ∈ X(1/p)(AK)F ∞ .
Since we can iterate this argument, either we find that (xv) is global, or
(xv) ∈ F n(X(AK)) for all n ≥ 1, and hence in X(AK,F). Thus, we have
X(AK)F ∞ ⊂ X(K) ∪ X(AK,F) ∪ Z.

For the reverse containment, if (xv) ∈ Z, then by definition (xv) =
y + F (zv) for some y ∈ J(K) and (zv) ∈ F (J (1/p)(AK)). Hence the class of
(xv) in

∏
v H1(Kv, ker F ) is in the image of H1(K, ker F ) and thus survives

F -descent. Finally, X(AK,F) ⊂ X(AK,F)F ∞ . □
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Let us call a point y ∈ X(K) horizontal if the curve D → X correspond-
ing to y is everywhere tangent to the horizontal curves C → X, P 7→ P +P0
with P0 fixed. The following estimate is a consequence of the above proof:

Theorem 3.6. Let C be a smooth curve of genus g and assume that C
has no g1

2, g1
3, nor g1

4. The number of points of X(K) which are neither
horizontal nor in the image of Frobenius is bounded by (pr − 1)/(p − 1)
where r is the Mordell–Weil rank of J(K).

Proof. Let y ∈ X(K) with µ(y) ̸= 0 and suppose that the image of the
corresponding map γ : D → Pg−1

F is not contained in C. Then the proof
of Theorem 3.5 shows that y can be uniquely recovered from γ. Indeed,
for generic P ∈ D, γ(P ) is in an unique secant line QQ′ to C and thus
y(P ) = {Q, Q′} ∈ X.

We note that the group J(K)/F (J (1/p)(K)) is a quotient of J(K)/pJ(K)
which is a Fp-module. Given y ∈ X(K) ⊂ J(K) and c ∈ Fp, we have
µ(cy) = cµ(y). Thus for c ̸= 0, we have [µ(cy)] = [µ(y)] ∈ Pg−1

F (K)
and we find that γ depends only on µ(y) up to Fp-scalars in the image
of (J(K)/F (J (1/p)(K))) \ {0}. Otherwise, again from the proof of Theo-
rem 3.5, if the image of γ : D → Pg−1

F is contained in C, then this gives rise
to a point Q ∈ C(K) and either y = 2Q, which can also be recovered from
µ(y) up to Fp-scalars, or Q is in the image of Frobenius which implies y is
horizontal.

In the former case, we can also uniquely recover the point from the class
in the image of (J(K)/F (J (1/p)(K))) \ {0} but the classes we obtain are
distinct from those of the first part of the argument as these have γ(D) ⊂ C,
while for the others, γ(D) ̸⊂ C.

Since, as noted above, J(K)/F (J (1/p)(K)) is a quotient of J(K)/pJ(K)
and Frobenius is an isomorphism on p-torsion, we have that the quotient
J(K)/F (J (1/p)(K)) has order at most pr. Thus since we have shown that
any point of y of X(K) which is neither horizontal nor in the image of
Frobenius is completely determined up to Fp-scalars by the corresponding
class in J(K)/F (J (1/p)(K)), we find that that the total number of such
points is bounded by (pr − 1)/(p − 1). □

We note that there can be infinitely many horizontal points, since if
P, Q ∈ C(K), P +F n

q (Q) ∈ X is horizontal for all n ≥ 1, where Fq : C → C
is the Fq-Frobenius. Also, some hypothesis is needed in both Theorems 3.5
and 3.6. If D is an elliptic curve and C → D is a map of degree 2 (i.e.
C is bielliptic and has a g1

4), then the fibers of the map C → D define a
map D → X. This map can be composed with isogenies of D to give rise
to infinitely many maps D → X, that is, points of X(K). These points
are not horizontal. We can also construct adelic points, unobstructed by
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Frobenius descent, by taking suitable varying local components from this
infinite collection of global points. See Example 3.12.

3.3. Frobenius descent on arbitrary subvarieties. We now consider
subvarieties X of constant abelian varieties A with dim A ≥ 3, and no
longer assume that X is the symmetric square of a curve. We will construct
X in such a way that guarantees the existence of non-global adelic points
unobstructed by Frobenius descent. As before, we fix a smooth curve D
over F, and let K = F(D).

Lemma 3.7. Let C1 and C2 be two curves contained in A. Then there
exists an irreducible divisor X of A containing both C1 and C2.

Proof. Such an X exists since if V is a closed subset of codimension at
least 2 in A containing C1 and C2, then by [8, Theorem 1.1] (and indepen-
dently [16, Theorem 1.2]), a finite field analogue of a Bertini-type theorem
for hypersurface sections containing a given subscheme, one can find an
irreducible divisor of A containing V . □

Proposition 3.8. Assume there exist points P1, Q ∈ A(K) and let P2 :=
P1 + F (Q), where F denotes the Frobenius isogeny on A. Let D1 and D2
be the images of the corresponding maps in MorF(D, A). Then there exists
a subvariety X of A containing D1 and D2. Moreover, there exist adelic
points (Pv) ∈ X(AK) unobstructed by Frobenius descent.

Proof. We apply Lemma 3.7 to A and the curves D1 and D2 to obtain such
an X. To exhibit adelic points on XK unobstructed by Frobenius descent,
we separate the places of K into two disjoint nonempty sets S1 ⊔S2. Define
the adelic point (Pv) ∈ X(AK) by Pv := Pi if v ∈ Si. Let zv ∈ A(Kv) be
such that zv = 0 when v ∈ S1 and zv = Q, defined above, when v ∈ S2.
Then, for each place v we have Pv = P1 + F (zv), since if v ∈ S1 then
Pv = P1 + F (0) and if v ∈ S2 then Pv = P2 = P1 + F (Q). Since both S1
and S2 are nonempty, (Pv) ∈ X(AK) is not a global point. Moreover, by
construction, (Pv) is unobstructed by Frobenius descent. □

However, we claim that any such adelic point is obstructed by a finite
étale torsor.

Proposition 3.9. The point (Pv) ∈ X(AK) from Proposition 3.8 is ob-
structed by a torsor obtained from the pullback of the multiplication-by-n
isogeny on A for some integer n.

Proof. Assume for the sake of contradiction that (Pv) is unobstructed for
each integer n. Then (Pv) = R + n(yv) for some R ∈ A(K) and (yv) ∈
X(AK). Since Pv is either P1 or P2, both of which are global points in
J(K), this equality implies that for each v, the point yv ∈ A(K) as long as
n and p = char(K) are coprime. This would imply that P1 − P2 is in the
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image of the multiplication by n map for each such n. But the Mordell–Weil
group of A is finitely generated, so this cannot occur. □

Proposition 3.10. Assume that the map h : P → Pg−1
F is generically finite.

Suppose that there exists (xv) ∈ X(AK) which survives Frobenius descent
and such that µ(xv) ̸= 0 for some v. Let γ : D → Pg−1

F be the map arising
from the corresponding global point on A. If γ(D) is contained in the open
set where h is finite and h−1(γ(D)) is irreducible, then h−1(γ(D)) gives
rise to a point in X(K) \ X(F).

Proof. As in the statement of Lemma 3.4 we have µ(xv) = µ(y) ̸= 0 for
some y ∈ J(K) and y gives us a map D → Pg−1

F and we let C denote
the image of D in Pg−1

F under this map. Under the stated hypotheses,
C ′ := h−1(C) is an irreducible curve in P . Their fiber product D′ := C ′×CD
is curve which covers D and since C ′ is irreducible, so too is D′. As in the
beginning of this section, the existence of the adelic point (xv) gives us an
adelic point (x̃v) of P which then lands in D′ by our construction. It follows
that D′ → D is a cover of curves such that almost all primes split, thus by
the Chebotarev density theorem, we must have that D′ is birational to D.
So we have a map D → D′ and we also have maps D′ → C ′ → P → X
by construction, which compose to give a map D → X, hence a point in
X(K). □

Remark 3.11. Under the assumptions that h is generically finite, (xv) ∈
X(AK) survives Frobenius descent, and γ(D) is contained in the open set
where h is finite, we conclude that the only way X(K)\X(F) = ∅ is if D′ is
reducible. An interesting question is whether the examples provided above
are typical.

3.4. Degeneracy of the Gauss map. When X is a surface contained in
an abelian threefold, we find that h : P → P2, thereby mapping the three
dimensional projectivized tangent bundle P to the projective plane and
hence cannot be finite. The following example illustrates that in this con-
text, there exist non-global adelic points on such a surface X unobstructed
by Frobenius descent.

Example 3.12. Assume F has odd characteristic. Let C be the quartic
curve with affine equation x4 + y4 = 1, D the curve x4 + z2 = 1, and let
X be the image of C(2) in the Jacobian J of C. Consider the map C → D
given by (x, y) 7→ (x, y2). By taking the fibers of this map, we obtain a
map f : D → C(2). Let g : D → C(2) be the composition of the map D → D
taking (x, z) 7→ (−x, z) with f , and let Pf and Pg represent the points of
C(2)(K) corresponding to f and g, respectively.
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By [6, Lemma 3.1], the Frobenius descent map µ induced on J is given by
P 7→ P ∗(ω1, . . . , ωg) where the ωi form a basis of holomorphic differentials
of C. In this case such a basis is given by {dx

y3 , x dx
y3 , dx

y2 }, and we find µ(Pf ) =
(0, 0, 2dx

z ) = µ(Pg). This is independent of the characteristic, hence the
difference of these two points is constant and thus in the image of Frobenius,
i.e., Pf − Pg = F (z) for some z ∈ J(K).

Following the same construction as in the proof of Proposition 3.8, we
define an adelic point (Pv) of X by splitting the places of K into S1 ⊔ S2
and alternating between Pf for v ∈ S1 and Pg for v ∈ S2. Let zv = z when
v ∈ S1 and zv = 0 when v ∈ S2. Then by construction Pv is not global but
survives Frobenius descent.

As noted above, the Gauss map in the previous example is degenerate
for dimension reasons. We owe the following example to Dan Abramovich.
It has a degenerate Gauss map with 2-dimensional image but not due to
dimension reasons, as in the previous example.

Recall that the a-number of an abelian variety A/F can be defined as
dimF Hom(αp, A[p]), where αp is the group-scheme Spec(F[x]/(xp). It is an
integer between 0 and dim A and all values can be attained for a suitable
choice of A (see [13]). We start with an abelian variety A0 with a-number
equal to dim A0 = g ≥ 4. The condition on the a-number implies that,
for any subspace V of T0A0, there is a unique sub-group-scheme of ker F
whose tangent space is V . We now construct a smooth surface X0 ⊂ A0,
with 0 ∈ X0 (say, by intersecting with hyperplanes in a suitable projective
embedding of A0 and applying Bertini’s theorem). We now select a subspace
V of T0A0 of codimension 3 which meets T0X0 only at 0.

Consider the quotient map ρ : A0 → A by the sub-group-scheme of ker F
with tangent space V and let X = ρ(X0). By the transversality of V and
T0X0, the map ρ|X0 is a local isomorphism at 0. Now, since ρ is purely
inseparable, X is birational to X0. However, the Gauss map h : P → Pg−1

F
corresponding to X has image in P(T0A/V ) which is a projective plane.
On the other hand, a general choice of X0 would ensure that X generates
A as a group and therefore is not contained in a lower-dimensional abelian
subvariety, so the degeneracy of h is not due to dimension reasons for g ≥ 4.

We have not been able to construct a failure of the Frobenius descent
obstruction in this setting but expect that there might be such examples.

3.5. Descent and the Brauer–Manin obstruction. At present, there
are several difficulties in extending the result that the Brauer–Manin ob-
struction is equivalent to finite abelian descent for curves to arbitrary con-
stant subvarieties of abelian varieties. The proof of [12, Proposition 4.6]
uses the fact that Br(X) = 0 when X is a curve; for higher dimensional
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X it is possible for transcendental Brauer elements to exist. In the number
fields case, Creutz proves that there are no transcendental Brauer–Manin
obstructions on abelian varieties [4], but it is unknown whether this extends
to subvarieties of abelian varieties over a global function field K. Addition-
ally, if the Neron–Severi group NS(X) ̸∼= Z (which occurs e.g., for X = C(2)

as follows from the corresponding classical result for C2) and moreover if
H1(K, NS(X)) is non-trivial, then there may be additional Brauer obstruc-
tions not coming from finite abelian descent.
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