
Robin BARTLETT

Potential diagonalisability of pseudo-Barsotti–Tate representations
Tome 35, no 2 (2023), p. 335-371.

https://doi.org/10.5802/jtnb.1248

© Les auteurs, 2023.

Cet article est mis à disposition selon les termes de la licence
CREATIVE COMMONS ATTRIBUTION – PAS DE MODIFICATION 4.0 FRANCE.
http://creativecommons.org/licenses/by-nd/4.0/fr/

C EN T R E
MER S ENN E

Le Journal de Théorie des Nombres de Bordeaux est membre du
Centre Mersenne pour l’édition scientifique ouverte

http://www.centre-mersenne.org/
e-ISSN : 2118-8572

https://doi.org/10.5802/jtnb.1248
http://creativecommons.org/licenses/by-nd/4.0/fr/
http://www.centre-mersenne.org/


Journal de Théorie des Nombres
de Bordeaux 35 (2023), 335–371

Potential diagonalisability of
pseudo-Barsotti–Tate representations

par Robin BARTLETT

Résumé. Des travaux antérieurs de Kisin et Gee prouvent la diagonalisabilité
potentielle des représentations de Barsotti–Tate de dimension 2 du groupe de
Galois d’une extension finie K/Qp. Dans cet article, nous nous appuyons sur
leur travail en remplaçant la condition de Barsotti–Tate par une condition
plus faible que nous appelons pseudo-Barsotti–Tate (ce qui signifie que pour
certains plongements κ : K → Qp les poids de Hodge–Tate relativement à κ
sont autorisés à être dans l’intervalle [0, p] plutôt que dans [0, 1]).

Abstract. Previous work of Kisin and Gee proves potential diagonalisability
of two dimensional Barsotti–Tate representations of the Galois group of a
finite extension K/Qp. In this paper we build upon their work by relaxing the
Barsotti–Tate condition to one we call pseudo-Barsotti–Tate (which means
that for certain embeddings κ : K → Qp we allow the κ-Hodge–Tate weights
to be contained in [0, p] rather than [0, 1]).

1. Introduction

1.1. Overview. Following [1, §1.4], a potentially crystalline representa-
tion of GK is potentially diagonalisable if, after restricting to GK′ for some
finite K ′/K, it is contained in the same irreducible component of a crys-
talline deformation ring as a direct sum of characters. In [1] automorphy
lifting theorems are proved for global representations which are potentially
diagonalisable at places above p.

Unfortunately, potential diagonalisability has been established in only a
small number of cases. If K/Qp is unramified then crystalline representa-
tions with Hodge type in the Fontaine–Laffaille range are known to be po-
tentially diagonalisable, cf. [1, 7] for the extended Fontaine–Laffaille range.
It is also known for ramified K and Barsotti–Tate Hodge types (i.e. those
concentrated in degrees [0, 1]) by results in [8, 13].

In [3, 4] the author extended these results when K/Qp is unramified to
Hodge types concentrated in degrees [0, p] (also a mild cyclotomic-freeness
assumption is required). The aim of this paper is to show how the methods
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of loc. cit. can also be applied when K ramifies. The following are the precise
assumptions we require:

Definition 1.1.1. Let k denote the residue field of K and choose an in-
dexing κij for the embeddings K ↪→ Qp so that κij |k = κi′j′ |k if and only if
i = i′. Also let F be a finite extension of Fp.

(1) A Hodge type µ = (µκ)κ:K→Qp
is pseudo-Barsotti–Tate if there

exists such an indexing κij so that µκij ⊂ [0, hj ] with h1 = p and
h2 = · · · = he = 1.

(2) A continuous representation VF of GK on an F-vector space is
cyclotomic-free if there exists an unramified extension K ′/K such
that every Jordan–Holder factor V of VF|GK′ is one-dimensional,
and if V is unramified then V ⊗ F(−1) is not a Jordan–Holder fac-
tor of VF|GK′ .

Thus, being pseudo–Barsotti–Tate is somewhere between being Barsotti–
Tate and being concentrated in degrees [0, p]. The cyclotomic-freeness con-
dition avoids possible extensions of the inverse of the cyclotomic character
by the trivial representations. For example, the only non-cyclotomic-free
two dimensional representations are of the form ψ ⊗

( 1 ∗
χ−1

cyc

)
for some un-

ramified character ψ. Note also that cyclotomic-freeness depends only on
the representations semi-simplification.

Theorem 1.1.2. Every crystalline representation V of GK with pseudo-
Barsotti–Tate Hodge type and cyclotomic-free residual representation is po-
tentially diagonalisable.

1.2. Method. The typical method for establishing potential diagonalis-
ability is to replace V by V |G′

K
for K ′/K a sufficiently large unramified ex-

tension so that the residual representation becomes a successive extension
of one-dimensional representations (such a K ′ always exists after possibly
extending the coefficient field). While V may not itself be ordinary (that
is, have every Jordan–Holder factor one-dimensional) one aims to produce
an ordinary V ′ lying on the same irreducible component in the crystalline
deformation ring.

For K/Qp unramified and Hodge types in the Fontaine–Laffaille range
the key input which enables this approach is the observation that the de-
formation rings in question are formally smooth over Zp. Unfortunately,
this is not the case once one leaves the Fontaine–Laffaille range. In [3]
we addressed this by considering instead Kisin’s “resolution” by moduli of
Breuil–Kisin modules:

Lµ
RVF
−→ SpecRµ

VF

The key calculation was that for µ concentrated in degrees [0, p], Lµ is
formally smooth over Zp. As this morphism becomes an isomorphism after
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inverting p, potentialy diagonalisability can then be established by arguing
as in the previous paragraph, but with V and V ′ replaced with points in
Lµ

RVF
, i.e. after replacing V and V ′ by their corresponding Breuil–Kisin

modules.
When K/Qp ramifies the situation is worse still. Even in the case of

Barsotti–Tate µ considered in [13] the Lµ
RVF

have normal special fibres but
need not be smooth. This normality is sufficient to establish potential di-
agonalisability in some cases via an explicit construction of paths between
points in these spaces. However, this involves some laborious computations.
The key idea in this paper is to recover smoothness by replacing Lµ

RVF
by

a further “Demazure” type resolution
Lµ,conv

RVF
−→ Lµ

RVF

classifying Breuil–Kisin modules together with a specific filtration F• on
the image of its Frobenius. The key technical result is then:

Theorem 1.2.1. Assume that µ is pseudo–Barsotti–Tate and VF is cyclo-
tomic-free (in fact a weaker condition suffices here). Then

Lµ,conv
RVF

−→ SpecRµ
VF

becomes an isomorphism after inverting p and the local rings of Lµ,conv
RVF

are
formally smooth over Zp at closed points.

Once we have this theorem potential diagonalisability follows by an es-
sentially identical argument to that employed in [3].

The proof of Theorem 1.2.1 is based on a tangent space calculation;
we show that at any closed point the tangent space of the special fibre is
≤ the dimension of generic fibre. Since the generic fibre identifies with the
generic fibre of SpecRµ

VF
the latter value is well-known. To bound the mod p

tangent space we observe that since Lµ,conv
RVF

is Zp-flat by definition any
mod p tangent vector is induced from an A-valued point for A some finite
flat Zp-algebra. Such an A-valued point corresponds to a filtered Breuil–
Kisin module attached to a crystalline representation on a finite A-module.
Forgetting the A-action we use a generalisation to dimensions> 2 of a result
from [10] to ensure that the reduction modulo p of this filtered Breuil–Kisin
module is of a specific form (this is where the restriction to pseudo-Barsotti–
Tate Hodge types is crucial). Computing the possible extensions of filtered
Breuil–Kisin modules of this specific form produces the desired bound.

Acknowledgements. I would like to thank the Max Planck Institute for
Mathematics in Bonn for its support during the writing of this paper. I
would also like to thank the referee for their many helpful comments and
corrections.
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2. Notation

2.1. General conventions. Throughout we let K denote a finite exten-
sion of Qp with residue field a degree f extension k of Fp. Let e denote
the ramification degree of K over Qp and fix a uniformiser π ∈ K. Let
GK denote the absolute Galois group of K. We write E(u) ∈ W (k)[u] for
the minimal polynomial of π over W (k). This is a degree e polynomial
with E(u) ≡ ue modulo π. We also fix a compatible system π1/p∞ of p-
th power roots of π inside a completed algebraic closure C of K. We set
K∞ = K(π1/p∞). When p = 2 we additionally require that π be as in the
following lemma (when p > 2 this condition is automatic).

Lemma 2.1.1. If p = 2 then there exists a uniformiser π ∈ K so that
K∞ ∩ K(µp∞) = K; here µp∞ denotes the group of p-th power roots of
unity in C.

Proof. See [18, 2.1]. □

2.2. Coefficients. We fix a finite extension E of Qp with ring of integersO
and residue field F. These play the role of coefficient rings. We assume that
E contains a Galois closure of K so that there are ef distinct embeddings
K ↪→ E. It will be convenient to choose an indexing κij of these embeddings
by 1 ≤ i ≤ f and 1 ≤ j ≤ e as in Definition 1.1.1 so that

κij |k = κi′j′ |k ⇐⇒ i = i′

There is an isomorphism K ⊗Qp E
∼=
∏

ij E given by a ⊗ b 7→ (κij(a)b)ij .
This allows us to decompose any K⊗QpE-module M as

∏
ij Mij where Mij

is the submodule of M on which K acts via κij .
We emphasise that the identification K⊗Qp E

∼=
∏

ij E does not descend
to OK ⊗Zp O because the idempotents in K ⊗Qp E involve non-integral
terms (the only exception being when K = K0). However, we do have a
similar decomposition W (k) ⊗Zp O ∼=

∏
iO given by a ⊗ b 7→ (κi(a)b)i

where κi = κij |W (k) (which by construction is independent of j). Thus,
every W (k)⊗Zp O-module M can be decomposed as M =

∏
iMi where Mi

denotes the submodule of M on which W (k) acts through κi.
In particular this allows us to refine the construction of E(u) ∈W (k)[u]

as follows. Define Eij(u) ∈W (k)[u]⊗Zp O as the element corresponding to

(. . . 1, u− κij(π)︸ ︷︷ ︸
i−th position

, 1 . . . ) ∈
∏

i

O[u]

under the identification W (k)[u] ⊗Zp O ∼=
∏

iO[u]. We also set Ej(u) =∏f
i=1Eij(u). Note that

∏
ij Eij(u) =

∏
j Ej(u) = E(u).
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2.3. Filtered modules. A filtered module M over a ring A is a finite
A-module equipped with a filtration

· · · ⊂ Fili+1(M) ⊂ Fili(M) ⊂ · · ·
by A-submodules of M with A-projective graded pieces and with Filn(M) =
0 for n≫ 0 and Filn(M) = M for n≪ 0. If λ is a multiset of integers then
we say M has type λ is grn(M) has constant rank equal to the multiplicity
of n in λ. If M ′ is another filtered A-module write HomFil(M,M ′) for the
module of A-linear homomorphisms M →M ′ equipped with the filtration

Fili(HomFil(M,M ′)) = {x : M −→M ′ | x(Filn(M)) ⊂ Filn+i(M ′)}
for all n ∈ Z. If M ′ has type λ′ then

d(M,M ′) = rankA
HomFil(M,M ′)

Fil0(HomFil(M,M ′))
is equal to the

∑
x∈λ Card({x′ ∈ λ′ | x > x′}). In particular, it depends

only on λ and λ′ and we write d(M,M ′) = d(λ, λ′).

2.4. Hodge types. A Hodge type µ is a tuple (µij) indexed by 1 ≤ i ≤
f, 1 ≤ j ≤ e of multisets of integers (all of the same cardinality). The
decompositions from Section 2.2 allows us to produce, from either of the
following two sets of data,

(1) A tuple D1, . . . , De of filtered k ⊗Fp F-modules.
(2) A filtered K ⊗Qp E-module.

a tuple of filtered vector spaces indexed by 1 ≤ i ≤ f, 1 ≤ j ≤ e. We say
that objects as in either (1) or (2) have Hodge type µ if the ij-th filtered
vector space has type µij . We also write

d(µ, µ′) =
∑
ij

d(µij , µ
′
ij)

2.5. Period rings. Let OC♭ denote the inverse limit of the system
OC/p← OC/p← . . .

whose transition maps are given by x 7→ xp. This is a domain in character-
istic p equipped with an action of GK induced by that on OC/p. Its field of
fractions C♭ is algebraically closed (and identifies non-canonically with the
completed algebraic closure of k((u))). Hence Ainf = W (OC♭) and W (C♭)
admit GK-actions as well as the Witt vector Frobenius. The compatible
system π1/p∞ gives rise to an element π♭ ∈ OC♭ . Via this choice we em-
bed S = W (k)[[u]] → Ainf by u 7→ [π♭]. This embedding is φ-equivariant
when S is equipped with the Frobenius which on W (k) is the Witt vector
Frobenius and which sends u 7→ up. It is also GK∞-equivariant when S is
equipped with the trivial GK∞-action.
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2.6. Crystalline representations. A continuous representation of GK

on a finite dimensional E-vector space V is crystalline if Dcrys(V ) := (V ⊗Qp

Bcrys)GK has K0-dimension equal to the Qp-dimension of V . In this case
Dcrys(V ) is a finite free K0⊗Qp E-module of rank equal to the E-dimension
of V . We write Dcrys,K(V ) = Dcrys(V ) ⊗K0 K which is equipped with the
filtration given by

FilnDcrys,K(V ) = (V ⊗Qp t
iB+

dR)GK

and we say V has Hodge type µ is Dcrys,K(V ) has Hodge type µ. Note
that our normalisations are such that the cyclotomic-character has Hodge
type −1.

3. Moduli of Breuil–Kisin modules

3.1. Basic definitions. For any O-algebra A set SA = S ⊗Zp A and
write φ for the A-linear extension of φ on S. Recall also the elements
Ej(u) =

∏f
i=1Eij(u) in W (k)[u] ⊗Zp O ⊂ SO from Section 2.2. In this

paper only the case of A finite over O will be relevant.

Definition 3.1.1. Consider integers hj ≥ 0 for j = 1, . . . , e. A Breuil–Kisin
module over A of height ≤ hj is a finite projective SA-module M equipped
with an SA-linear homomorphism

M⊗S,φ S −→M

with cokernel killed by
∏e

j=1Ej(u)hj .

For any such M write Mφ for the image of this homomorphism and φ(M)
for the image of the composite M → M ⊗S,φ S → M with the first map
given by m 7→ m⊗ 1. Note that φ(M) is a φ(SA)-module which generates
Mφ over SA.

Lemma 3.1.2. If A is O-finite and M is a Breuil–Kisin module over A
of height ≤ hj then both M/Mφ and Mφ/

∏
Ej(u)hjM are finite projective

A-modules.

Proof. From the exact sequence

0 −→Mφ/

(
e∏

i=1
Ej(u)hj

)
M −→M/

(
e∏

i=1
Ej(u)hj

)
M −→M/Mφ −→ 0

it is enough to consider M/Mφ. That this is finite projective over A is
proven in [5, 4.1.1]. □
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3.2. Recalling a construction of Kisin. Now fix a continuous repre-
sentation of GK on a finite dimension F-vector space VF together with a
choice of F-basis and let R = RVF = R□

VF
⊗W (k)O denote the corresponding

O-framed deformation ring. Write VR for the universal deformation and for
any homomorphism α : R→ A write VA = Vα = VR ⊗α,R A.

Construction 3.2.1. For each hj ≥ 0 and each Artin O-algebra with finite
residue field set L≤hj (A) equal to the set pairs (M, α) where α : R→ A is
a homomorphism and M is a GK∞-stable SA-submodule of VA⊗Zp W (C♭)
with

(3.2.2) M⊗S W (C♭) = VA ⊗Zp W (C♭)

and for which the semilinear extension of the trivial Frobenius on VA makes
MA into a Breuil–Kisin module over A of height ≤ hj . Base-change along
A make this into a functor on Artin O-algebras.

For any Hodge type µ let Rµ denote the unique O-flat reduced quotient
of R with the property that a homomorphism R→ B into a finite E-algebra
factors through Rµ if and only if VB is crystalline of Hodge type µ. The
existence of such a quotient is the main result of [12]. If we assume µ is
concentrated in degrees [0, hj ] then have the following:

Proposition 3.2.3 (Kisin). The functor A 7→ L≤hj (A) is represented by a
scheme L≤hj

R and the morphism Θ : L≤hj

R → SpecR given by (M, α) 7→ α is
projective. Furthermore Θ

[1
p

]
is a closed immersion and SpecRµ → SpecR

factors through the scheme-theoretic image of Θ.

Proof. When each hj = h then this follows from [12] (in particular see
1.5.1 and 1.6.4 therein). The construction of L≤h

R also shows that for any
hj ≤ h both A 7→ (

∏e
i=1Ej(u)hj )M/E(u)hM and A 7→ M/Mφ extend

to sheaves of OL≤h
R
⊗Zp S-modules which are coherent as OL≤h

R
-modules.

Lemma 3.1.2 shows they are also locally free. As a consequence, the locus
of L≤h

R over which (
∏e

i=1Ej(u)hj )M ⊂Mφ is closed. This is precisely L≤hj

R .
It remains only to show that if µ is concentrated in degrees [0, hj ] then it
factors through L≤hj

R . This follows from part (4) of Lemma 5.1.2 which is
proven in Section 5.1. □

An easy limit argument shows that the description of the A-points of
L≤hj

R is valid whenever A is a finite O-algebra (i.e. not necessarily Artinian).

3.3. A convolution variant. We now produce a variant of L≤hj

R . For any
Artin R-algebra A set L≤hj ,conv(A) equal to the set of triples (M, α,F) for
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which (M, α) ∈ L≤hj (A) and F is a sequence of SA-submodules

(3.3.1)
(

e∏
j=1

Ej(u)hj

)
M = Fe ⊂ · · · ⊂ F1 ⊂ F0 = Mφ

with Ej(u)hjF j−1 ⊂ F j ⊂ F j−1 and F i−1/F i finite projective over A for
each j.

Proposition 3.3.2. The functor A 7→ L≤hj ,conv(A) is represented by a
scheme L≤hj ,conv

R .

Proof. The representability of L≤hj ,conv follows from the observation made
in the proof of Proposition 3.2.3 that A 7→Mφ/(

∏
Ej(u)hj )M extends to a

coherent locally free sheaf on L≤hj

R . Indeed, this shows that L≤hj ,conv
R can be

constructed as a succession of extensions of Grassmannians over L≤hj

R . □

Just as for L≤hj

R , a limit argument shows that the description of A-points
of L≤hj ,conv

R is also valid whenever A is a finite O-algebra.

Lemma 3.3.3. Let A be a finite flat O-algebra and suppose (M, α,F) ∈
L≤hj ,conv(A). Then

F j = Mφ ∩
( j∏

l=1
El(u)hl

)
M

for j = 0, . . . , e. In particular, for each (M, α) ∈ L≤hj (A) there exists
at most one sequence F of submodules as in (3.3.1) so that (M, α,F) ∈
L≤hj ,conv(A).

Proof. We first prove the lemma after inverting p. For this note that SO
[1

p

]
is a principal ideal domain and so

SO

[1
p

]
/

(
e∏

j=1
Ej(u)hj

)
∼=

e∏
j=1

SO

[1
p

]
/Ej(u)hj

as the Ej(u) are pairwise coprime. As M := Mφ
[1

p

]
/
(∏e

j=1Ej(u)hj
)
M
[1

p

]
is a SO

[1
p

]
-module we can write M =

∏e
j=1Mj with Mj ⊂ M the SA

[1
p

]
-

submodule consisting of elements not killed by El(u)hl for any l ̸= j. For
j = 0, . . . , e define

G̃j =
e∏

l=j+1
Mj ⊂M

(so G0 = M and Ge = 0). If F̃ j denotes the image of F j
[1

p

]
inside M then

we claim that F̃ j = G̃j . To see this note that Gj is the largest submodule of
M which is killed by

∏e
l=j El(u)hl and so F̃ j ⊂ G̃j . Since G̃0 = M = F̃0 we
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can prove the opposite inclusion by induction on j; thus we can assume that
Ej(u)hj G̃j−1 ⊂ F̃ j ⊂ G̃j and the claim then follows from the observation
that Ej(u)hj G̃j−1 = G̃j .

The preimage of G̃j under Mφ
[1

p

]
→M is equal to

Mφ
[1
p

]
∩
( j∏

l=1
El(u)hl

)
M

[1
p

]
since this preimage is the largest submodule of Mφ

[1
p

]
which is mapped

into
(∏e

l=1El(u)hl
)
M
[1

p

]
by multiplication with

∏e
l=j El(u)hl . Therefore

F j
[1
p

]
= Mφ

[1
p

]
∩
( j∏

l=1
El(u)hl

)
M

[1
p

]
Since Mφ/F j is A-projective it is p-torsionfree and so F j = F j

[1
p

]
∩Mφ.

Similarly Mφ ∩
(∏j

l=1El(u)hl
)
M
[1

p

]
=
(∏j

l=1El(u)hl
)
M. This gives the

equality in the lemma. □

Remark 3.3.4. For a general finite flat O-algebra A and (M, α) ∈ L≤hj (A)
the filtration given by

F j = Mφ ∩
( j∏

l=1
El(u)hl

)
M

will not define an A-valued point of L≤hj ,conv because the graded pieces
are not A-projective. One exception is when A is the ring of integers in a
finite extension of E since in this case A-projectivity is equivalent to being
p-torsionfree, which is clear.

Corollary 3.3.5. The morphism L≤hj ,conv
R → L≤hj

R given by (M, α,F) 7→
(M, α) becomes a closed immersion after inverting p which incudes an iso-
morphism (

L≤hj ,conv
R

[1
p

])
red

∼=
(
L≤hj

R

[1
p

])
red

on the underlying reduced closed subschemes.

Proof. First we show that L≤hj ,conv
R → L≤hj

R becomes a closed immersion
after inverting p. For this it suffices, since this morphism is proper, to show
the induced map on B-valued points is injective for any finite E-algebra
B. As explained in e.g. the first paragraph of the proof of [12, 1.6.4], any
B-valued point is induced from an A-valued point for some finite flat O-
algebra A. Thus, it suffices to show injectivity on A-points for any such A
and this follows from Lemma 3.3.3.
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To show this closed immersion induces an isomorphism as claimed it
suffices to show that it induces a bijection on points valued in a finite
extension of E (since L≤hj

R

[1
p

]
is a Jacobson scheme). This is equivalent

to showing that L≤hj ,conv
R → L≤hj

R induces a bijection on A-valued points
whenever A is the ring of integers in a finite extension of E, and that this
is the case is explained in Remark 3.3.4. □

Since SpecRµ
[1

p

]
is reduced Proposition 3.3.2 implies that it can be

viewed as a closed subscheme of L≤hj ,conv
R

[1
p

]
. This allows us to make the

following definition.
Definition 3.3.6. For any Hodge type µ concentrated in degrees [0, hj ]
define Lµ,conv

R as the closure of SpecRµ
[1

p

]
in L≤hj ,conv

R

Corollary 3.3.7. The map Lµ,conv
R → SpecR factors through SpecRµ and

Lµ,conv
R → SpecRµ becomes an isomorphism after inverting p.

Proof. This follows immediately from the definition of Lµ,conv
R as a closure

of a closed subscheme in the generic fibre of L≤hj ,conv
R . □

The main object of this paper is to describe the local geometry of Lµ,conv
R

under the assumptions from Definition 1.1.1.
Theorem 3.3.8 (Main Theorem). Assume that

(1) µ is pseudo-Barsotti–Tate, i.e. that µ is concentrated in degrees
[0, hj ] for h1 = p and h2 = · · · = he = 1

(2) For any GK∞-stable submodule V ⊂ VF which is unramified there
exists no GK∞-equivariant quotient VF →W with W ∼= V ⊗F(−1).

Then the local rings of Lµ,conv
R at closed points are formally smooth over O.

In Lemma 6.2.6 we explain why condition (2) is satisfied whenever VF is
cyclotomic-free in the sense of Definition 1.1.1.

Proof granting the results of Section 6.1. Let x ∈ Lµ,conv
R any closed point.

Enlarging F if necessary we can assume that x is an F-valued point. We
show in Proposition 6.3.1 below that the tangent space of Lµ,conv

R ⊗O F at
x has dimension

≤ d2 + d(µ, µ)
(recall d(µ, µ) is the value described in Section 5.3.1). On the other hand,
in [12, 3.3.8] it is shown that Rµ

[1
p

]
is equidimensional of dimension d2 +

d(µ, µ). The same is therefore true of Lµ,conv
R

[1
p

]
and so, by flatness, also

for Lµ,conv
R ⊗O F. This shows that the above inequality is an equality and

that the local rings of Lµ,conv
R ⊗O F at closed points are regular. Since the

local rings of Lµ,conv
R are Zp-flat by definition it follows from [17, 07NQ]

that they are formally smooth over O. □
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Remark 3.3.9. One could also consider the closure of SpecRµ
[1

p

]
in L≤hj

R .
However the schemes obtained in this way typically fail to be regular. For
example, it is shown in [13] that when µ is concentrated in degrees [0, 1]
these spaces are smoothly equivalent to certain local models defined in [15]
which, while normal, are not necessarily smooth.

4. Strongly divisible extensions

4.1. Categories of mod p Breuil–Kisin modules. Let ModF denote
the category whose objects are pairs (M,F) with M a Breuil–Kisin module
over F of any height ≥ 0 and F a sequence of SF-submodules

ue+p−1M = Fe ⊂ · · · ⊂ F1 ⊂ F0 = Mφ

satisfying upF0 ⊂ F1 ⊂ F0 and uF i−1 ⊂ F i ⊂ F i−1 for i = 2, . . . , e.
Morphisms HomF (P,M) in this category are φ-equivariant maps of SF-
modules respecting the filtrations.

Definition 4.1.1. Let ModSD
F denote the full subcategory of ModF con-

sisting of those (M,F) for which there exists an Fp[[up]]-basis (ei) of φ(M)
and integers ri ∈ [0, p] such that F1 is generated by (uriei).

The key properties that ModSD
F enjoy are described in Section 4.5.

Remark 4.1.2. When e = 1 the category ModSD
F is precisely the category

denoted in ModSD
k and studied in [2].

The following is another interpretation of ModSD
F . For (M,F) ∈ ModF

define
• Fili(Mφ) = Mφ ∩ uiF1.
• Fili(M) equal to the image of Fili(Mφ) in M = Mφ/uMφ.
• F i(M) = φ(M) ∩ uiF1

Lemma 4.1.3. (M,F) ∈ ModSD
F if and only if image of the composite

Fn(M) −→Mφ −→M

is Filn(M) for all n.

Proof. If (M,F) ∈ ModSD
F then choose (ei) and (ri) as in Definition 4.1.1.

We see that Filn(Mφ) is generated over Fp[[u]] by umax{n+ri,0}ei. Therefore
Filn(M) is generated by the images of those ei with n+ ri ≤ 0. This shows
that the image of the composite in the lemma surjects onto Filn(M).

For the converse, choose an Fp-basis of M adapted to the filtration, i.e.
choose a basis (ei) and integers (ri) so that Filn(M) is generated by those ei

for which n+ ri ≤ 0. In particular, ei ∈ Fil−ri(M) and so, by assumption,
we can find ei ∈ F−ri(M) = φ(M) ∩ u−riF1 whose image in M is ei.
Clearly, any such choice of ei produces an Fp[[up]]-basis of φ(M), so we will
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be done if we can show that F1 is generated by uriei. For this we argue
by (decreasing) induction on n that for x ∈ F1 ∩ unMφ implies x can be
expressed as an Fp[[u]]-linear combination or uriei. Clearly this is true for
n ≥ max{ri} so we can assume it is true for n + 1. Then x ∈ F1 ∩ unMφ

implies u−nx ∈ Fil−n(Mφ) and so the image of u−nx in M is contained in
Fil−n(M). Hence

u−nx ≡
∑

ri−n≤0
αiei mod uMφ

for αi ∈ Fp. Therefore x−
∑

ri≤n αiu
nei ∈ F1 ∩ u1+nMφ which finishes the

proof. □

4.2. Properties of exact sequences in ModSD
F . We say that a se-

quence of morphisms

0 −→ (M, E) −→ (N,F) −→ (P,G) −→ 0

in ModF is exact if the induced sequences 0 → E i → F i → Gi → 0 are
exact for all i when viewed as sequences of SF-modules.

Proposition 4.2.1. Suppose (N,F) ∈ ModSD
F .

(1) Then (M, E) and (P,G) ∈ ModSD
F .

(2) The induced sequences 0 → gri(M) → gri(N) → gri(P) → 0 are
exact for each i.

(3) There exists an SF-linear splitting s : P→ N such that s(G1) ⊂ F1

and s(φ(P)) ⊂ φ(N).

Parts (1) and (2) of this proposition were proved in [2] in the case e = 1.
For the general case we observe that the condition in Definition 4.1.1 only
refers to the relative positions of F1 and φ(M); in particular it is a condition
on the image of the Frobenius morphism rather than the morphism itself.

Proof. To reduce to the case e = 1 we produce a commutative diagram

0 u−pE1 ⊗φ φ(SF) u−pF1 ⊗φ φ(SF) u−pG1 ⊗φ φ(SF) 0

0 φ(M) φ(N) φ(P) 0

with the vertical arrows being isomorphisms of φ(SF)-modules. As the
vertical arrows go between projective φ(SF)-modules of the same rank the
outer arrows can be chosen arbitrarily and, after choosing an φ(SF)-linear
splitting of the top exact sequence, this determines the central vertical
arrow. In the language of [2], this makes 0→ u−pE1 → u−pF1 → u−pG1 →
0 into an exact sequence in ModBK

k with u−pF1 strongly divisible (as in [2,
5.2.9]). Applying [2, 5.4.6] we deduce (1) and (2).
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Now we address (3). Note that (2) ensures we can choose a k⊗Fp F-linear
splitting s of N → P mapping Fili(P) into Fili(N) by choosing successive
splittings of the surjections gri(N)→ gri(P). From s we obtain a splitting

s : φ(P) = P⊗k⊗FpF φ(SF) −→ N⊗k⊗FpF φ(SF) = φ(N)

of φ(N) → φ(P) which we claim maps G1 into F1. For this we first show
that

s(Fn(P)) ⊂ Fn(N)
for n ≤ 0. As s is compatible with the filtrations on P and N it follows that
the image of Fn(P) := φ(P) ∩ unG1 under s in N is contained in Filn(N).
Lemma 4.1.3 therefore implies that if x ∈ Fn(P) then s(x) = x1 +upx2 for
x1 ∈ Fn(N) and x2 ∈ φ(N). Since upNφ ⊂ F1 we have upx2 ∈ F1 ⊂ unF1

for n ≤ 0. Thus upx2 ∈ Fn(N) and so s(x) ∈ Fn(N) also. This establishes
the displayed inclusion above. To show s(G1) ⊂ F1 note that by (1) we
have P ∈ ModSD

F and so there is a basis (ei) of φ(P) as in Definition 4.1.1.
Since ei ∈ F−ri(P) we have s(ei) ∈ F−ri(N) and so

s(uriei) = uris(ei) ∈ F1

As the uriei generate G1 this finishes the proof. □

4.3. Ext groups via an explicit complex. For M = (M, E) and P =
(P,G) in ModF consider the first Yoneda extension group Ext1

F (P,M) in
ModF , i.e. the set of exact sequences

0 −→M −→ (N,F) −→ P −→ 0, (N,F) ∈ ModF

as considered in the previous section, modulo the equivalence relation iden-
tifying two sequences if and only if there exists a morphism α in ModF
making the following diagram commute.

0 M (N,F) P 0

0 M (N′,F ′) P 0

α

We define Ext1
SD(P,M) ⊂ Ext1

F (P,M) as the subset consisting of those
classes which can be represented by exact sequences as above with (N,F) ∈
ModSD

F . Proposition 4.2.1 implies that Ext1
SD(P,M) is empty unless P,M ∈

ModSD
F .

Notation 4.3.1. In what follows, for any pair of SF-modules, we write
Hom( · , · ) for the set of SF-linear maps. For M,P ∈ ModF we can fur-
ther equip Hom(P,M) with the Frobenius described in [2, 4.2.5]. We also
denote this Frobenius by φ. It can be described concretely as follows: for
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h ∈ Hom(P,M)[ 1
u ] then φ(h) ∈ Hom(P,M)[ 1

u ] is the homomorphism de-
fined by

φ(x) 7−→ φ(h(x))
for any x ∈ P. Note this uniquely determines φ(h) because φ(P) generates
P[ 1

u ] over SF[ 1
u ].

Remark 4.3.2. We emphasise that, unlike the Breuil–Kisin modules in Def-
inition 3.1.1, the Frobenius on Hom(M,N) will typically not have image in
Hom(M,N) but in Hom(M,N)[ 1

u ].

In [3, 4.1] an explicit complex is given which computes Ext1
SD(P,M)

in the case e = 1. Here we produce a similar complex which computes
Ext1

SD(P,M) when e ≥ 2. For M and P as above (we emphasis that for
this definition we do not require M,P ∈ ModSD

F ) consider the submodule

C1
SD ⊂

e−1∏
1

Hom(P,M)
[1
u

]
consisting of those (g1, . . . , ge−1) satisfying gi(Gi+1) ⊂ E i and gi(uGi) ⊂
E i+1 for each i. This fits into a two-term complex

CSD : F 0(Hom(P,M))×
e−1∏
i=2

Hom(Gi, E i) dSD−−→ C1
SD

(h1, . . . , he−1) 7−→ (h2 − h1, h3 − h2, . . . , φ
−1(h1)− he−1)

where, as for objects in ModF , we write F i(Hom(P,M)) for the set of
h ∈ φ(Hom(P,M)) mapping G1 into uiE1 for all i ∈ Z.

Remark 4.3.3. We point out that setting e = 1 in the above construction
does not recover the complex from [3, 4.1] since the products here are empty.

The following lemma motivates the construction of CSD.

Lemma 4.3.4. For e ≥ 2 one has H0(CSD) = HomF (P,M) and there is
an injection

Ext1
SD(P,M) −→ H1(CSD)

(in fact it is a bijection if P,M ∈ ModSD
F we but only require injectivity for

our applications).

Proof. The first assertion is easy so we focus on the second. To construct the
injection begin by considering an exact sequence 0→M→ (N,F)→ P→
0 in ModSD

F . For each i we can choose SF-linear splittings si of F i → Gi for
i = 1, . . . , e − 1. Proposition 4.2.1 allows us to assume that s1 maps φ(P)
into φ(N). As such φ−1(s1) maps P into M and so also Ge into Fe. It is
then immediate that

g = (s2 − s1, s3 − s2, . . . , φ
−1(s1)− se−1)
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defines an element in C1
SD. Suppose that s′

i is another choice of splittings
with corresponding g′ ∈ C1

SD. Then s′
i − si ∈ Hom(Gi, E i) and s1 − s′

1 ∈
F 0(Hom(P,M))). This shows that g − g′ is contained in the image of dSD
so we obtain a well-defined element of H1(CSD).

Now suppose 0 → M → (N,F) → P → 0 and 0 → M → (N′,F ′) →
P → 0 are exact sequences mapping, by the construction from the previ-
ous subsection, into the same element H1(CSD). Then each exact sequence
admits splittings si and s′

i so that
(s2− s1, s3− s2, . . . , φ

−1(s1)− se−1) = (s′
2− s′

1, s
′
3− s′

2, . . . , φ
−1(s′

1)− s′
e−1)

Equivalently
s1 − s′

1 = s2 − s′
2 = · · · = se−1 − s′

e−1 = φ−1(s1)− φ−1(s′
1)

For n ∈ N write n for its image in P and consider the map α : N → N′

given by
n 7−→ n− s1(n) + s′

1(n)
Note this makes sense because n− s1(n) ∈ E1 and so can be viewed as an
element of F ′1. The fact that s1−s′

1 = φ−1(s1)−φ−1(s′
1) shows this map is

φ-equivariant. The fact that s1−s′
1 = si−s′

i implies F i is mapped into F ′i.
Therefore α is a morphism in ModSD

F which shows our two exact sequences
define the same element in Ext1

SD(P,M). As a consequence the construction
from the first paragraph produces an injection Ext1

SD(P,M)→ H1(CSD) as
desired. □

4.4. Dimension calculations. For M, P ∈ ModF write
Hom(P,M)k := φ(Hom(P,M))/up

Recall that F i(Hom(P,M)) is defined in Section 4.3 as the set of h ∈
φ(Hom(P,M)) mapping G1 into uiE1. Set F i(Hom(P,M)k) equal the im-
age of F i(Hom(P,M)) in Hom(P,M)k

Proposition 4.4.1. Assume e ≥ 2. Then the cohomology of CSD is F-finite
and if

χ(P,M) := dimFH
1(CSD)− dimFH

0(CSD)
then

χ(P,M) = dimF
Hom(P,M)k

F 0(Hom(P,M)k) +
e−1∑
i=1

dimF Hom(Gi+1/uGi, E i/E i+1)

provided that gri(Hom(P,M)k) = 0 for i < −p.

We begin by proving the proposition under the following assumptions:
(i) every h ∈ φ(Hom(P,M)) maps Gi into E i for every i and
(ii) φ(Hom(P,M)) ⊂ uHom(P,M).

Lemma 4.4.2. Proposition 4.4.1 holds under assumptions (i) and (ii).
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Proof. Assumption (ii) implies that u-adically φn(h) → 0 for every h ∈
Hom(P,M). From this we deduce φ − 1 is an F-linear automorphism of
Hom(P,M). Injectivity is clear and, for surjectivity, if h ∈ Hom(P,M)
then φ−1 sends −

∑
n≥0 φ

n(h) onto h. From injectivity of φ−1 we deduce
that H0(CSD) = 0.

Since H0(CSD) = 0 the map dSD : C0
SD → C1

SD is injective. However,
assumption (i) also allows us to view C0

SD ⊂ C1
SD via the obvious map

(hi) 7→ (hi), Furthermore, the cokernel of this second inclusion naturally
identifies with

H1 :=
e−1∏
i=1

Hom(Gi+1/uGi, E i/E i+1)

To relate the cokernel of dSD with H1 we refine C0
SD ⊂ C1

SD to a sequence

· · · ⊂ C−1
SD ⊂ C

0
SD ⊂ C1

SD

by defining Cj
SD ⊂ C0

SD as the subset consisting of those (gi) ∈ C0
SD for which

gi(Gi+j′) ⊂ E i+j′ for all 0 ≤ j′ ≤ −j. By assumption (i) φ(Hom(P,M))
maps Gi into E i for each i. This implies dSD induces complexes:

CSD,j : Cj−1
SD −→ C

j
SD

For j ≤ 0 we can also define maps Cj
SD → H1 by

(hi) 7−→ (−1)−j+1(0, . . . , 0︸ ︷︷ ︸
−j+1

, h2, . . . , he+j−1)

(here hi denotes the image of h in Hom(Gi−j+1/uGi−j , E i−j/E i−j+1)). A
short computation shows that

Cj
SD H1

Cj−1
SD H1

commutes for all j. If Hj denotes the image of Cj
SD → H1 then the following

diagram commutes and has exact rows

0 Cj−1
SD Cj

SD Hj 0

0 Cj−2
SD Cj−1

SD Hj−1 0

dSD dSD

By considering the associated long exact sequence we deduce thatH1(CSD,j)
is finite if and only if H1(CSD,j+1) is. Since H0(CSD,j) = 0 if H1(CSD,j) is
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F-finite then we also have:

dimFH
1(CSD,j) = dimFH

1(CSD,j+1) + dimFHj − dimFHj+1

It is easy to see Hj = 0 for j ≤ −e + 2. Therefore, since C1
SD,1 = C1

SD, the
result will follow if H1(CSD,j) = 0 for sufficiently small j.

For this, note that if j ≤ −e + 2 then Cj
SD consists of those (hi) ∈ C1

SD
with hi(Gi′) ⊂ E i′ for all i′ ≥ i. In particular, if (hi) is such an element then
hi ∈ Hom(P,M) for each i and so we can choose, by the first paragraph of
the proof, h′

1 ∈ φ(Hom(P,M)) so that φ−1(h′
1)−h′

1 = h1 +h2 + · · ·+he−1.
Then define

h′
2 = h2 + h′

1, h
′
3 = h3 + h′

2, . . . , h
′
e−1 = he−1 + h′

e−2

Using that φ(h′
i) maps Gi into E i for every i we deduce (h′

i) ∈ C
j
SD = Cj−1

SD
and that dSD((h′

i)) = (hi). This completes the proof. □

Lemma 4.4.3. After replacing (M, E) with (unM, unE) ∈ ModF for n
sufficiently large conditions (i) and (ii) are satisfied.

Proof. If N ≥ 0 is sufficiently large then uN Hom(G1, E1) is contained in
both uHom(P,M) and Hom(Gi, E i) for each i. For any n ∈ Z we have

(4.4.4) FN (Hom(P, unM)) = upnFN−(p−1)n(Hom(P,M))

For sufficiently large n we have FN−(p−1)n(Hom(P,M)) = φ(Hom(P,M))
and so upnFN−(p−1)n(Hom(P,M)) = φ(Hom(P, unM)). This shows

φ(Hom(P, unM)) ⊂ uN Hom(G1, unE1)

and so is contained in uHom(P, unM) and Hom(Gi, unE i) for each i. □

Proof of Proposition 4.4.1. First, note that H0(CSD) is contained
Hom(P,M)φ=1 which is always F-finite since it is contained in the finite
dimensional F-vector space (Hom(P,M)⊗k[[u]]C

♭)φ=1. If we replace (M, E)
by (unM, unE) ∈ ModF in the definition of CSD we obtain another complex
which we denote CSD(n). Taking n = 1 we obtain an exact sequence

0 −→ CSD(1) −→ CSD −→ Q −→ 0

of complexes, whose associated long exact sequence reads

(4.4.5) 0 −→ H0(CSD(1)) −→ H0(CSD) −→ H0(Q)
−→ H1(CSD(1)) −→ H1(CSD) −→ H1(Q) −→ 0

Note that Q is a two term complex Q0 γ−→ Q1 and the Qi can be described
explicitly. It is easy to see that CSD(1)1 = uC1

SD, and so Q1 ∼= C1
SD/uC1

SD.
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On the other hand,

Q0 ∼=
F 0(Hom(P,M))
F 0(Hom(P, uM)) ×

e−1∏
i=2

Hom(Gi, E i/uE i)

We claim
F 0(Hom(P,M))
F 0(Hom(P, uM))

∼=
⊕

i∈pZ≤0∪Z≥1

gri(Hom(P,M)k)

as F-vector spaces. In particular, we claim both Q0 and Q1 are F-finite and
so the same is true for the cohomology of Q. Together Lemma 4.4.2 and
Lemma 4.4.3 imply H1(CSD(n)) is finite for large n. From (4.4.5) we deduce
finiteness of H1(CSD).

To verify the claim first choose an F-linear splitting of
0 −→ F 1(Hom(P,M)) −→ F 0(Hom(P,M)) −→ gr0(Hom(P,M)) −→ 0

and so write
F 0(Hom(P,M)) ∼= F 1(Hom(P,M))⊕ gr0(Hom(P,M))

Note that F 0(Hom(P, uM)) consists of
h ∈ φ(Hom(P, uM)) = upφ(Hom(P,M))

which map G1 into uE1. In other words,
F 0(Hom(P, uM)) = upφ(Hom(P,M)) ∩ F 1(Hom(P,M)),

which is the kernel of the surjection F 1(Hom(P,M))→ F 1(Hom(P,M)k).
Therefore,

F 0(Hom(P,M))
F 0(Hom(P, uM))

∼= gr0(Hom(P,M))⊕ F 1(Hom(P,M)k)

Splitting

0 −→ F i+1(Hom(P,M)k) −→ F i(Hom(P,M)k)
−→ gri(Hom(P,M)k)tto0 for i ≥ 1

allows us to write
F 1(Hom(P,M)k) ∼=

⊕
i∈Z≥1

gri(Hom(P,M)k)

There are also exact sequences

0 −→ gri−p(Hom(P,N)) u−→ gri(Hom(P,M)) −→ gri(Hom(P,M)k) −→ 0
and, by choosing F-linear splitting, we can identify

gr0(Hom(P,M)) ∼=
⊕

i∈pZ≤0

gri(Hom(P,M)k)
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The claim follows.
To finish the proof note that (4.4.5) implies

χ(P,M) = χ(P, uM) + dimFH
1(CSD)− dimFH

0(CSD)
= χ(P, uM) + dimFQ1 − dimFQ0

Since C1
SD is an F[[u]]-lattice inside

∏e−1
i=1 Hom(P,M)[ 1

u ],Q1 has F-dimension
equal to (e − 1)r where r is the F[[u]]-rank of Hom(P,M). The above de-
scription of Q0 shows it has F-dimension

(e− 2)r +
∑

i ̸∈pZ≤0∪Z≥1

dimF gri(Hom(P,M)k)

Since r =
∑

i dimF gri(Hom(P,M)k) it follows that

χ(P,M) = χ(P, uM) +
∑
i<0
p∤i

dimF gri(Hom(P,M)k)

Using (4.4.4) and the assumption that gri(Hom(P,M)k) = 0 for i < −p we
deduce

χ(P,M) = χ(P, unM) +
n−1∑
m=0

∑
i<0
p∤i

dimF gri−(p−1)m(Hom(P,M)k)


= χ(P, unM) +

∑
i<0

dimF gri(Hom(P,M))k

= χ(P, unM) + dimF
Hom(P,M)k

F 0(Hom(P,M)k)
for n > 2. Combining this with Lemma 4.4.2 and Lemma 4.4.3 gives the
proposition. □

4.5. Strong divisibility and Hodge types. We conclude by attach-
ing a Hodge type to a strongly divisible Breuil–Kisin module (recall from
Section 2.4 that we can view a Hodge type as an e-tuple of filtered k⊗Fp F-
modules).

Construction 4.5.1. To any M ∈ ModF we obtain such an e-tuple of
filtrations by equipping, for j = 2, . . . , e, the k ⊗Fp F-module

F j−1/uF j−1

with the one step filtration

Fili(F j−1/uF j−1) =


F j−1/uF j−1 for i ≤ −1
F j/uF j−1 for i = 0
0 for i ≥ 1
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and by equipping F0/uF0 = M with the filtration from Section 4.1. Write
µ(M) for the Hodge type determined by these e-filtered modules.

Example 4.5.2. Here we illustrate this construction in the case where
(M,F) ∈ ModSD

F is of rank one over SF. Choose a generator m ∈M. Then
there exists xj ∈ SF so that

F j = SFxjm

The elements xj are defined up to scaling by SF and so we can assume
xj = (usij )i, sij ≥ 0

under the identification SF =
∏f

i=1 F[[u]]. Since Ej(u)F j−1 ⊂ F j ⊂ F j−1 it
follows that

sij−1 + 1 ≥ sij ≥ sij−1

For j = 2, . . . , e the i-th part of grsij−1−sij (F j−1/uF j−1) is non-zero. This
shows that F j−1/uF j−1 has type sij−1−sij . By definition, the n-th filtered
piece on F0/uF0 is the image of

F0 ∩ unF1 =
(
SF(usi0)i ∩SF(usi1+n)i

)
m = SF(umax{si0,si1+n})im

It follows that the i-th part of grsi1−si0(F0/uF0) is non-zero. We conclude
that

µ(M,F) = (sij−1 − sij)i=1,...,f,j=1,...,e

Proposition 4.5.3.
(1) Suppose that N ∈ ModSD

F and that
0 −→M −→ N −→ P −→ 0

is an exact sequence in ModF . Then M,P ∈ ModSD
F and

µ(N) = (µ(M), µ(P))
where (µ1, µ2) denotes the concatenation of two Hodge types.

(2) Suppose M,P ∈ ModSD
F . Then

dimF Ext1
SD(P,M)− dimF HomF (P,M) ≤ d(µ(P), µ(M))

Proof. Part (1) follows immediately from Parts (1) and (2) of Proposi-
tion 4.2.1.

For Part (2) we can assume that e ≥ 2 since the e = 1 case is proven
in [4, 4.2.5]. We begin by explaining how strong divisibility of both P and
M implies the filtered module Hom(P,M)k identifies with HomFil(P,M)
(as described in Section 2.3). To see this first note that F i(Hom(P,M))
consists of those h ∈ φ(Hom(P,M)) for which h(Fn(P)) ⊂ F i+n(M) for
all n ∈ Z. This shows that

Hom(M,P)k
∼= HomFil(P,M)
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where we equip P with the filtration whose i-th filtered piece is the image
of F i(P), and likewise for M. Since P is strongly divisible Lemma 4.1.3
implies this filtration on P is the filtration defined in Section 4.1. As the
same is true for the filtration on M the claim follows.

Since upP ⊂ F1 ⊂ P we have Fil−p(P) = P and Fil1(P) = 0. There-
fore gri(P) ̸= 0 only for i ∈ [−p, 0]. Likewise for M. This implies that
HomFil(P,M) has non-zero graded pieces only for i ∈ [−p, p]. In partic-
ular, grn(Hom(P,M)k) = 0 for n < −p and so Proposition 4.4.1 applies.
Combined with Lemma 4.3.4 and the first paragraph we deduce that

dimF Ext1
SD(P,M)− dimF HomF (P,M)

≤ dimF
HomFil(P,M)

Fil0(HomFil(P,M))
+

e−1∑
j=1

dimF Hom(Gj+1/uGj , Ej/Ej+1)

To conclude we just need to identify Hom(Gj+1/uGj , Ej/Ej+1) with

HomFil(Gj/uGj , Ej/uEj)
Fil0(HomFil(Gj/uGj , Ej/uEj))

Note that since the filtrations on Gj/uGj and Ej/uEj are one-step filtra-
tions, and so Fil0(HomFil(Gj/uGj , Ej/uEj))) identifies with the set of ho-
momorphisms mapping Fil0(Gj/uGj) into Fil0(Ej/uEj). Since this is the
kernel of the surjective map

HomFil(Gj/uGj , Ej/uEj) −→ Hom(Gj+1/uGj , Ej/Ej+1)

the claimed identification follows. □

5. Crystalline vs. strong divisibility

5.1. Filtrations on the image of Frobenius. Fix (M, α,F) correspond-
ing to an O-valued point of Lµ,conv

R with Lµ,conv
R as in Section 3. For the

moment µ is any Hodge type concentrated in degrees [0, hj ] with hj ≥ 0.
Write V = VR ⊗α O. Then V

[1
p

]
is a crystalline representation of Hodge

type µ and so, as described in Section 2.6 we have D := Dcrys(V
[1

p

]
) a finite

free K0 ⊗Qp E-module and DK = D ⊗K0 K a filtered K ⊗Qp E-module of
type µ.

Since M and V satisfy (3.2.2) it follows that M is the Breuil–Kisin mod-
ule associated to V by Kisin as in e.g. [14, 1.2.1] or [11]. In particular there
is φ-equivariant identification

Mφ ⊗S S

[1
p

]
∼= D ⊗K0 S

[1
p

]
where S denotes the p-adic completion of the divided power envelope of
W (k)[u] relative to the ideal generated by E(u), cf. [9, 3.2]. Concretely S
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can be viewed as the subring of K0[[u]] consisting of series of the form
∞∑

i=0
ai

ui

e(i)! , ai ∈W (k)

where e(i) denotes the largest integer ≤ i/e. This allows us to define a
φ-equivariant diffential operator on Mφ ⊗S S by the formula

N (d⊗ a) = d⊗ (−u d
du

(a))

for d ∈ D and a ∈ S.
Construction 5.1.1. For integers nij ≥ 0 inductively define S ⊗Zp E-
submodules Fil{nij} of Mφ ⊗S S

[1
p

]
by setting Fil{nij} = Mφ ⊗S S

[1
p

]
if

every nij ≤ 0 and

Fil{nij} =
{
x ∈Mφ ⊗S S

[1
p

] ∣∣∣∣∣ fij(x) ∈ Filnij (DK,ij) for all ij

and N (x) ∈ Fil{nij−1}

}
otherwise.

Tensoring along the map S → K sending u 7→ π produces a surjection
fπ : Mφ ⊗S S

[1
p

]
→ DK . Let fij denote the composition of this surjection

with the projection DK =
∏

ij DK,ij → DK,ij .

Lemma 5.1.2. The Fil{nij} enjoy the following properties
(1) fij(Fil{nij}) = Filnij (DK,ij) for each ij.
(2) These are filtrations in the sense that Ei′j′(u)Fil{nij−1i′j′ } ⊂

Fil{nij} ⊂ Fil{nij−1i′j′ } for every i′j′ (here 1i′j′ denotes the tuple
which is zero everywhere but in the i′j′-th position where it is 1).

(3) Ei′j′(u)x ∈ Fil{nij} implies x ∈ Fil{nij−1i′j′ }.
(4) Fil{hj} ∩Mφ = (

∏
Eij(u)hj )M.

Proof. Properties (1), (2) and (3) follow from [10, 2.1.9]. Part (4) follows
from [10, (2.2.1)]. □

Corollary 5.1.3. Fil{nij} ∩Mφ = Mφ ∩
(∏

ij Eij(u)nij
)
M and there are

exact sequences

0 −→ Fil{nij−1i′j′ } ∩Mφ
Ei′j′ (u)
−−−−−→ Fil{nij} ∩Mφ

fi′j′
−−→ Filni′j′ (DK,i′j′) ∩ fi′j′(Mφ)

whose rightmost map becomes surjective after inverting p. Furthermore,
F j = Fil{h1,...,hj ,0,...,0} ∩Mφ

where (h1, . . . , hj , 0, . . . , 0) indicates the tuple with hj′ in the ij′-th position
if j′ ≤ j and 0 otherwise.
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Proof. Lemma 5.1.2 together with the fact that the kernel of fi′j′ on Mφ is
Ei′j′(u)Mφ, ensures that the above sequence is exact. If nij ≥ hj for each
ij then Filnij (DK,ij) = 0 and therefore

Fil{nij} ∩Mφ =

∏
ij

Eij(u)nij−hj

 (Fil{hj} ∩Mφ)

As a consequence, Part (4) of Lemma 5.1.2 gives the first identity when
nij ≥ hj . For general nij we then argue by decreasing induction on

∑
nij

(the previous sentence gives the basis case). If x ∈ Fil{nij}∩Mφ then we can
choose i′j′ so that the inductive hypothesis gives Ei′j′(u)x ∈ Fil{nij+1i′j′ } ∩
Mφ = Mφ ∩

(∏
ij Eij(u)nij+1i′j′

)
M. Therefore x ∈Mφ ∩

(∏
ij Eij(u)nij

)
M.

A similar argument gives the converse inclusion.
For exactness on the right after inverting p we use that for every h ≥

0 each x ∈ S
[1

p

]
can be written as x1 + E(u)hx2 with x1 ∈ S

[1
p

]
and

x2 ∈ S
[1

p

]
. Since E(u)hMφ ⊗S S

[1
p

]
⊂ Fil{nij} for sufficiently large h it

follows that for each x ∈ Fil{nij} there exists x′ ∈ Fil{nij} ∩Mφ
[1

p

]
such

that fij(x) = fij(x′) for each ij. This, combined with (1) of Lemma 5.1.2,
shows that the above sequence is exact on the right after inverting p.

For the final assertion, if we define F ′j := Fil{h1,...,hj ,0,...,0} ∩Mφ then
Lemma 5.1.2 implies Ej(u)hjF ′j−1⊂F ′j⊂F ′j−1 and F ′e =

(∏
j Ej(u)hj

)
M.

Also F ′j/F ′j−1 is O-flat. The proof of Proposition 3.3.2 shows that these
properties uniquely determine F ′j so F ′j = F j as desired. □

5.2. Integral filtrations. Our aim is to prove the following:

Proposition 5.2.1. There exists a Zp[[u]]-basis (ei) of Mφ and integers
ri ∈ [0, p] such that

(1) Fil{p,0,...,0} ∩Mφ is generated by (E1(u)max{p−ri,0}ei)
(2) ei = fi + πgi for some fi ∈ φ(M) and gi ∈Mφ.

Warning 5.2.2. We remind the reader that the notation Fil{p,0,...,0}

appearing in the previous proposition follows the notation introduced in
Corollary 5.1.3. Therefore

Fil{n,0,...,0} ∩Mφ = Mφ ∩ E1(u)nM

In particular, we note that as n increases the filtration jumps at each of
the embeddings κi1 for i = 1, . . . , f .

Before proving the proposition we need some preparations. First take
any x = x(0) ∈Mφ ⊗S S and inductively define

x(i) =
i−1∑
l=0

H(u)l

l! N l(x(i−1))
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where H(u) = E1(u)
E1(0) .

Lemma 5.2.3. If fi1(x) ∈ Filn(DK,i1) for each i and δi = min{i, n} then
x(i) ∈ Fil{δi,0,...,0}.

Proof. It suffices to show N (x(i)) ∈ Fil{δi−1,0,...,0}. Since δi−1 ≥ δi − 1 we
may instead show N (x(i)) ∈ Fil{δi−1,0,...,0}. Writing ∂ = −u d

du we compute

N (x(i)) =
i−1∑
l=0

(
H(u)l−1∂(H(u))

(l − 1)! + H(u)l

l! N l+1(xi−1)
)

= H(u)i−1

(i− 1)! N
i(x(i−1))︸ ︷︷ ︸

(a)

+
i−1∑
l=1

(1 + ∂(H(u)))H(u)l−1

(l − 1)! N
l(x(i−1))︸ ︷︷ ︸

(b)

If x ∈ Fil{r,0,...,0} then H(u)lx ∈ Fil{r+l,0,...,0}. Therefore (a) is contained
in Fil{i−1,0,...,0} ⊂ Fil{δi−1,0,...,0}. The inductive hypothesis implies x(i−1) ∈
Fil{δi−1,0,...,0} and so N l(x(i−1)) ∈ Fil{δi−1−l,0,...,0}. Since 1 + ∂(H(u)) =
−H(u), each (b) term is contained Fil{δi−1−l+l,0,...,0} = Fil{δi−1,0,...,0}

also. □

To apply Lemma 5.2.3 in the proof of Proposition 5.2.1 we require some
control of the denominators appearing in the operator N . This is given by
the following result. It is here that the particular choice of π from Section 2
when p = 2 is important.

Theorem 5.2.4 (Gee–Liu–Savitt,Wang). For each x ∈ φ(M) and b ≥ 1
there exist xi ∈ φ(M) and ai ∈ E such that

N b(x) =
∞∑

i=0
E1(u)iaixi

with πp−i | ai for i = 0, . . . , p− 1.

Proof. If ∂ = −u d
du then ∂(E1(u)) = E1(0)− E1(u). Therefore

N (E1(u)iaixi) = E1(u)iai(1− i)N (xi) + iE1(u)i−1E1(0)aixi

Since E1(0) is divisible by π in W (k)⊗ZpO this shows, by an easy induction,
that if the statement holds for b = 1 then it holds for b ≥ 1.

If p > 2 then [9, 4.7] implies that N (x) is contained in Mφ ⊗S u
pS′ for

S′ = W (k)[[up, uep

p ]]
[1

p

]
∩ S and x ∈ φ(M). When p = 2 the same is true by

the results in [18]. Therefore, the theorem will follow if every s ∈ upS′ can
be written as

∞∑
i=0

E1(u)iai
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for ai ∈W (k)⊗Zp E with πp−i | ai for i = 0, . . . , p− 1. Here we are viewing
s as an element of K0[[u]]⊗Qp E and so also as a tuple (si) ∈

∏
iE[[u]]. Each

si can be written as
∞∑

j=0
aij

up(j+1)

e(pj)! =
∞∑

j=1

aij

e(pj)!

p(j+1)∑
l=0

(
p(j + 1)

l

)
(u− πi1)lπ

p(j+1)−l
i1


=

∞∑
l=0

(u− πi1)l

 ∑
j+1≥l/p

aij

e(pj)!

(
p(j + 1)

l

)
π

p(j+1)−l
i1


︸ ︷︷ ︸

al

for some aij ∈ O and πi1 = κi1(π). We must show that the al term is
divisible by πp−l in O for l = 0, . . . , p−1. This follows from the observation
that πpj

i1
e(pj)! ∈ O. □

Corollary 5.2.5. If x ∈ φ(M) then for each i ≤ p there are x1, . . . , xp−1 ∈
Mφ

x(i)−x+πpx1 +E1(u)πp−1x2 + · · ·+E1(u)p−1πxp−1 ∈ E1(u)pMφ⊗SS

[1
p

]
Proof. Using Theorem 5.2.4 it suffices to show that x(i)− x can be written
as a Z-linear combination of terms H(u)a

a′! N
b(x) for a, b ≥ 1 and 1 ≤ a′ ≤ a.

Arguing by induction it is enough to show

H(u)l

l! N l(H(u)a

a′ N b(x)) =
l∑

k=0

(
l

k

)
H(u)l∂k(H(u)a)

l!a′! N l−k+b(x)

is a Z-linear combination of such terms. This follows from the claim that
∂k(H(u)a)

a! is a Z-linear combination of terms of the form H(u)a′

a′! for 1 ≤
a′ ≤ a. To see this note that ∂(H(u)a) = aH(u)a−1(−1 − H(u)) and so
∂k(H(u)a)/a! equals

1
(a− 1)!∂

k−1(H(u)(−1−H(u)))

= 1
(a− 1)!

k−1∑
j=0

(
k − 1
j

)
∂j(H(u)a−1)∂k−1−j(−1−H(u))

= 1
(a− 1)!(−1−H(u))

k−1∑
j=0

(
k − 1
j

)
(−1)k−1−j∂j(H(u)a−1)

(for the second equality we’ve used that ∂n(H(u)) = (−1)n(−1−H(u)) for
n > 0). Inducting on k finishes the proof. □
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Proof of Proposition 5.2.1. Set Mj equal to the image of Mφ under fj :=∏
i fij . This is a W (k) ⊗Zp O-lattice inside

∏
iDK,ij which we equip with

the filtration
Filn(Mj) = Mj ∩

∏
i

Filn(DK,ij)

Choose a Zp-basis (ei) of M1 adapted to the filtration, i.e. so that there
exists integers ri with Filn(M1) is generated by those ei with n ≤ ri. This
is possible since the graded pieces of the filtration on M1 are p-torsionfree
by construction.

Note that f1 induces a surjection φ(M)→Mφ →M1 and so we can lift
(ei) to a Zp[[up]]-basis (fi) of φ(M). Lemma 5.2.3 implies

f
(p)
i ∈ Fil{min{ri,p},0,...,0}

If f (p)
i = fi + πf ′

i + H(u)pf ′′
i with f ′

i = πp−1fi,1 + · · · + Eij(u)p−1fi,p−1 as
in Lemma 5.2.3 then

ei := fi + πf ′
i ∈ Fil{min{ri,p},0,...,0} ∩Mφ

To finish the proof we show by induction on n that Fil{n,0,...,0}∩Mφ is equal
to the submodule Yn generated over Zp[[u]] by E1(u)max{n−ri,0}ei whenever
n ≤ p. The case n = 0 is clear so assume that assertion holds for n−1. Since
the image of ei in M equals that of fi, the image of Yn in M equals Filn(M)
and so contains the image of Fil{n,0,...,0} ∩Mφ. Corollary 5.1.3 shows that
the kernel of Fil{n,0,...,0}∩Mφ →M equals E1(u)Fil{n−1,0,...,0}∩Mφ which,
by the inductive hypothesis, equals E1(u)Yn−1. Since E1(u)Yn−1 ⊂ Yn we
conclude that Yn = Fil{n,0,...,0} ∩Mφ as desired. □

5.3. Application to strong divisibility. Maintain the notation from
above but assume additionally that µ is pseudo-Barsotti–Tate, i.e. that
h1 = p and h2 = · · · = he = 1. We can then define a second Hodge type µ∗

by setting

µ∗
ij =

{
(µij,1 − p, . . . , µij,d − p) if j = 1
(µij,1 − 1, . . . , µij,d − 1) if j = 2, . . . , e

when µij = (µij,1, . . . , µij,d).

Proposition 5.3.1. If (M, α,F) corresponds to an A-valued point of
Lµ,conv

R for any finite flat O-algebra A then

(MF,FF) := (M,F)⊗O F

is an object of ModSD
F . If A = O then this object has Hodge type µ∗ (in the

sense of Section 4.5).
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Proof. The first part follows immediately by viewing M as an SO-module
rather than an SA-module and Vα as an O-representation rather than a
representation on an A-module, and then applying Proposition 5.2.1.

For the second part, recall from Section 4.5 that the Hodge type of
(MF,FF) is determined by the types of the filtered modules F j−1

F /uF j−1
F

for j = 2, . . . , e and the filtered module MF.
We first relate F j−1

F /uF j−1
F with µ. To do this consider, for j = 2, . . . , e,

the filtration on F j−1/Ej(u)F j−1 defined by

Fili(F j−1/Ej(u)F j−1) =


F j−1/Ej(u)F j−1 for i ≤ 0
F j/Ej(u)F j−1 for i = 1
0 for i > 1

Note that the graded pieces of this filtration are projective W (k) ⊗Zp O-
modules because F j−1/F j is W (k)⊗ZpO-projective by assumption. Corol-
lary 5.1.3 implies that fj :=

∏
i fij induces embeddings

F j−1/Ej(u)F j−1 ↪→
∏

i

DK,ij

of filtered modules, and that these embeddings becomes isomorphisms after
inverting p. It follows that F j−1/Ej(u)F j−1 has type (µ1j , . . . , µfj). Note
that the filtration on F j−1

F /uF j−1
F defined in Section 4.5 can be described by

Filn(F j−1
F /uF j−1

F ) =
(
Filn+1(F j−1/Ej(u)F j−1)

)
⊗O F

Therefore F j−1
F /uF j−1

F has type (µ∗
1j , . . . , µ

∗
fj).

It remains to relate MF with µ. To do this we define a filtration on
F0/E1(u)F0 whose n-th piece is the image of Mφ ∩ E1(u)nM. As in the
previous paragraph, Corollary 5.1.3 implies that f1 =

∏
i fi1 gives an em-

bedding of filtered modules into
∏

iDK,i1, and that this embedding becomes
an isomorphism after inverting p. Unlike in the previous case, the graded
pieces of this filtration are not a priori W (k)⊗ZpO-projective (equivalently,
p-torsionfree). To establish this projectivity requires the assumption that µ
is pseudo-Barsotti–Tate and uses Proposition 5.2.1. This proposition (and
the assertions made in the second paragraph of its proof) establish the
existence of a Zp[[u]]-basis of Mφ so that Mφ ∩ E1(u)nM is generated by

E1(u)max{n−ri,0}ei

for integers ri ∈ [0, p]. Therefore the n-th filtered piece of F0/E1(u)F0

is generated by the images of those ei with ri ≥ n. As such, the n-th
graded piece is generated by the image of those ei’s with ri = n and so
is p-torsionfree. This means that the type of the filtration F0/E1(u)F0

corresponds to (µ11, . . . , µf1).
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If ei denotes the image of ei in Mφ
F then, since F1 = Mφ ∩E1(u)pM, we

also find that F1
F is generated by up−riei. Therefore, Mφ

F∩unF1
F is generated

by umax{n+p−ri,0}ei and so the filtration on MF is generated by the images
of those ei with n ≤ ri − p. This shows that

(Mφ ∩ E1(u)nMφ)⊗O F = Mφ
F ∩ u

n−pF1
F

As a consequence applying ⊗OF to the n-th filtered piece of F0/E1(u)F0

produces Filn−p(MF). Thus, the type of MF corresponds to the shift of
(µ11, . . . , µf1) by −p. This finishes the proof. □

The following example illustrates the proposition in the rank one case.

Example 5.3.2. Suppose that M is a rank one Breuil–Kisin module over
SO with generator m. Then

φ(m) = x
∏
ij

Eij(u)rijm

for some x ∈ S×
O and integers rij ≥ 0. Using [9, 2.2.3] one deduces that any

such M corresponds (in the sense of (3.2.2)) to a one dimensional crystalline
character with Hodge type (rij).1 Choosing some hj ≥ rij , Lemma 3.3.3
allows us to equip M with a unique filtration F• via

F j = Mφ ∩

 j∏
i=1

Ei(u)hj

M = SO

 ∏
1≤l≤j

Eil(u)hj
∏

j+1≤l≤e

Eil(u)rij

m
Applying ⊗OF we obtain a rank one object (MF,FF) as in Example 4.5.2
with

sij =
∑

1≤l≤j

hj +
∑

j+1≤l≤e

rij

If M is pseudo-Barsotti–Tate we can take h1 = p and hj = 1 for j = 2, . . . , e.
Noting that sij−1 − sij = rij − hj it follows from Proposition 5.3.1 that

µ(MF,FF) = (hj − rij) = (rij)∗

which agrees with Proposition 5.3.1.

1We remark here that care should be taken when invoking the results of [9] due to different
normalisations. They normalise their Hodge types to be the negative of ours. They also con-
travariantly attach Breuil–Kisin modules to crystalline representations. These two differences in
normalisations cancel each other out which is why the referenced lemma remains true in our
setting precisely as written.
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6. Tangent spaces

6.1. Tangent space dimensions and extension groups. For any F-
valued point x ∈ Lµ,conv

R corresponding to (Mx, αx,Fx) we write Tx for
the tangent space of Lµ,conv

R ⊗O F at x. In other words Tx is the subset of
Lµ,conv

R (F[ϵ]) mapping onto x for F[ϵ] the ring of dual numbers over F. To
understand these vector spaces observe that if (M, α,F) ∈ Tx then, since
M and F i are F[ϵ]-flat, 0 →Mx →M

ϵ−→Mx → 0 is an exact sequence in
ModF (here we write Mx in place of (Mx,Fx) and likewise for M). This
construction produces an F-linear homomorphism

Tx −→ Ext1
F (Mx,Mx)

into the Yoneda extension group in ModF .

Proposition 6.1.1. If µ is pseudo-Barsotti–Tate then Tx→Ext1
F (Mx,Mx)

factors through Ext1
SD(Mx,Mx).

Proof. Since Lµ,conv
R is O-flat and Lµ,conv

R

[1
p

]
= SpecRµ

[1
p

]
which is reduced

it follows from [3, 4.1.2] that every A-valued point of Lµ,conv
R valued in an

Artin local ring with finite residue field is induced from an A-valued point
for A some finite flat O-algebra. The claim therefore follows by applying
this with A = F[ϵ] and using the first part of Proposition 5.3.1. □

6.2. Cyclotomic-freeness. To describe the kernel of Tx→Ext1
F (Mx,Mx)

we will need to use the cyclotomic-freeness assumption. We will also need a
second technical result from [9]. It is very closely related to Theorem 5.2.4
(in fact it is the main ingredient going into the proof of Theorem 5.2.4).

Theorem 6.2.1 (Gee–Liu–Savitt). Suppose that A is a finite local O-
algebra and (M, α,F) ∈ Lµ,conv

R for any µ. Then the identification

M⊗S W (C♭) = Vα ⊗Zp W (C♭)

is such that (σ−1)(m) ∈M⊗ [π♭]φ−1µAinf for all σ ∈ GK and all m ∈M.
Here µ = [ϵ]− 1 for some generator ϵ ∈ Zp(1) ⊂ OC♭.

Proof. We reduce to the case where A is O-flat using [3, 4.1.2]. In this case
the theorem is one direction of [3, 2.1.12]. □

When pA = 0 we have M⊗S [π♭]φ−1(µ)Ainf = M⊗k[[u]]u
(e+p−1)/(p−1)OC♭

as follows from the well-known calculation that ϵ − 1 generates the ideal
uep/(p−1)OC♭ whenever ϵ is a compatible system of primitive p-th power
roots of unity, cf. [6, 5.2.1]. This motivates the following setup. Let M1,M2
be Breuil–Kisin modules over SF satisfying

(1) ue+p−1Mi ⊂Mφ
i .

(2) Each Mi ⊗k[[u]] C
♭ is equipped with a φ-equivariant C♭-semilinear

action of GK for which
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(a) (σ − 1)(m) ∈Mi ⊗k[[u]] u
(e+p−1)/(p−1)OC♭ for σ ∈ GK

(b) (σ − 1)(m) = 0 for σ ∈ GK∞

whenever m ∈Mi.

Proposition 6.2.2. Let γ ∈ k be such that

σ(γu(p+e−1)/(p−1)) = γu(p+e−1)/(p−1)χcyc(σ)

for all σ ∈ GK∞. If there exists no φ-equivariant SA-linear map

M1 −→ γu(p+e−1)/(p−1)M2

then any φ-equivariant SF-linear map M1 →M2 becomes GK-equivariant
after extending scalars to OC♭.

We point out that such a γ exists because the character of GK∞ defined
by σ(u(e+p−1)/(p−1)) = χ(σ)u(e+p−1)/(p−1) is an unramified twist of the χcyc.

Proof. The GK-action on Hom(M1,M2) ⊗k[[u]] C
♭ given by h 7→ σ ◦ h ◦

σ−1 is φ-equivariant. We must show (σ − 1)(H) = 0 for all σ ∈ GK if
H ∈ Hom(M1,M2) satisfies (φ − 1)(H) = 0. Assumption (2a) implies
(σ − 1)(H) ∈ H ⊗k[[u]] OC♭ for

H = Hom(M1, γu
(p+e−1)/(p−1)M2)

Since the element γ satisfies φ(γ)/γ ∈ k assumption (1) implies

(γu(p+e−1)/(p−1)N)φ ⊂ γup+e−1+(p+e−1)/(p−1)N

It follows thatH is φ-stable inside Hom(M,N)⊗kk. SinceH is φ-equivariant
σ 7→ (σ − 1)(H) defines a continuous 1-cocycle

GK −→ (H⊗k[[u]] OC♭)φ=1

which vanishes on GK∞ . We will show any such cocycle is zero. First, since
H is φ-stable it is easy to see that V := (H⊗kk)φ=1 = (H⊗k[[u]]OC♭)φ=1. By
the choice of γ and the fact that GK∞-acts as the identity on Hom(M1,M2)
it follows that the action of GK∞ on V ⊗FF(−1) is unramified (i.e. is trivial
on GK∞ ∩ IK where IK ⊂ GK denotes the inertia subgroup). We also
claim that V ⊗F F(−1) contains no element invariant under GK∞ . This
follows because, K∞ being totally ramified, the composite GK∞ → GK →
Gk is surjective and so any such element would lie in Hφ=1. However,
by assumption no such element exists. The proposition then follows from
Lemma 6.2.3 below. □

Lemma 6.2.3. Let V be a continuous representation of GK on an F-
vector space such that V ⊗FF(−1)|GK∞ is unramified and contains no GK∞-
invariant element. Then any continuous 1-cocycle GK → V which vanishes
on GK∞ is zero.
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Proof. Let K̂ = K∞(µp∞). Since the cyclotomic character is trivial on
G

K̂
our first assumption implies that G

K̂
acts on V through the com-

posite G
K̂
↪→ GK → Gk. This composite is surjective and so our sec-

ond assumption implies V G
K̂ = 0. Inflation-restriction therefore implies

H1(GK , V ) → H1(G
K̂
, V ) is injective and so H1(GK , V ) → H1(GK∞ , V )

is also. It follows that any 1-cocycle as in the lemma is a coboundary
σ 7→ (σ − 1)(v) for some v ∈ V GK∞ . However V GK∞ ⊂ V

G
K̂ which we’ve

just seen is zero. □

Lemma 6.2.4. Suppose that for every unramified GK∞-submodule V ⊂ VF
there exists no GK∞-equivariant quotient VF → W with V ∼= W ⊗ F(1).
Then there exists no non-zero φ-equivariant map

Mx −→ γu(e+p−1)/(p−1)Mx

Proof. First consider M and N with ue+p−1M ⊂ Mφ and Nφ ⊂ ue+p−1N
and suppose H : M → N is non-zero and φ-equivariant. Then there is a
non-zero induced GK∞-equivariant map
(6.2.5) (M⊗k[[u]] C

♭)φ=1 −→ (N⊗k[[u]] C
♭)φ=1

We claim that the action ofGK∞ on the image of this map is unramified after
twisting by F(1). Applying this with M = Mx and N = γu(e+p−1)/(p−1)Mx

gives the lemma since then (N ⊗k[[u]] C
♭)φ=1 = VF ⊗ F(−1) and (M ⊗k[[u]]

C♭)φ=1 = VF.
To establish the claim we can assume thatH is injective and becomes sur-

jective after inverting u so that (6.2.5) is an isomorphism. Choose bases of
M and N so that their Frobenii are respectively represented by matrices A
and B, and so that H is represented by C. The φ-equivariance of H implies
Bφ(C)A−1 = C. The fact that ue+p−1M ⊂Mφ and Nφ ⊂ ue+p−1N implies
u−(e+p−1)B and ue+p−1A−1 have coefficients in SF. Considering the u-adic
valuation of determinants in the identity u−(e+p−1)Bφ(C)ue+p−1A−1 = C

implies that C, u−(e+p−1)B and u(e+p−1)A are invertible over SF. In par-
ticular, the Frobenius on M′ := (γu(e+p−1)/(p−1))−1M is a semilinear auto-
morphism and so the GK∞-action on (M′ ⊗k[[u]] C

♭)φ=1 is unramified. The
definition of γ gives that (M′ ⊗k[[u]] C

♭)φ=1 = (M ⊗k[[u]] C
♭)φ=1 ⊗ F(1) as

GK∞-representations, and the claim follows. □

Lemma 6.2.6. The conclusions of Lemma 6.2.4 apply if VF is cyclotomic-
free.
Proof. Restriction from GK to GK∞ is an equivalence between irreducible
representations of either group (cf. [4, 2.2.1]) which respects being unrami-
fied. Thus, if V and W as in Lemma 6.2.4 exist then there is an unramified
GK-Jordan–Holder factor V ′ of VF for which V ′⊗F(1) is also a GK-Jordan–
Holder factor. Thus VF is not cyclotomic-free. □
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6.3. Tangent space bounds.

Proposition 6.3.1. If µ is pseudo-Barsotti–Tate and there are no non-zero
φ-equivariant maps

Mx −→ γu(e+p−1)/(p−1)Mx

then dimF Tx ≤ d2 + d(µ, µ).

Proof. By Proposition 6.1.1, Proposition 4.5.3, and Proposition 5.3.1 it
suffices to show that the kernel of Tx → Ext1

SD(Mx,Mx) has F-dimension

≤ d2 −HomF (Mx,Mx)

For this suppose (Mi, αi,Fi) are in this kernel for i = 1, 2. Observe that
there is no non-zero φ-equivariant map H : M1 → γu(e+p−1)/(p−1)M2
as in Proposition 6.2.2. indeed, since M1 and M2 are both extensions
of Mx by itself any non-zero such H would induce a non-zero Mx →
γu(e+p−1)/(p−1)Mx.

The fact that (Mi, αi,Fi) are both in the kernel of Tx → Ext1
SD(Mx,Mx)

implies the existence of a morphism α : M1 → M2 in ModF which is the
identity on Mx viewed as either a submodule and a quotient. The previous
paragraph combined with Proposition 6.2.2 shows this identifies with a GK-
equivariant map Vα1 → Vα2 after base-changing to W (C♭) which induces
the identity on VF when viewed as either a submodule or a quotient.

In particular, it follows that the kernel of Tx → Ext1
SD(Mx,Mx) is con-

tained in the kernel of the composite Tx → T → Ext1(VF, VF) where T
denotes the tangent space of R⊗O F at its closed point. Since the kernel of
T → Ext1(VF, VF) identifies with

Hom(VF, VF)/Hom(VF, VF)GK

we are reduced to considering the kernel of Tx → T . The group of GK-
equivariant automorphisms of VF ⊕ ϵVF which are the identity on ϵVF and
modulo ϵ act on this kernel. This group identifies with Hom(VF, VF) via
h 7→ a + bϵ 7→ a + h(b)ϵ. The first paragraph shows that this action is
transitive. Furthermore, the stabiliser of the zero element in Tx clearly
identifies with those h ∈ Hom(VF, VF)GK inducing an endomorphism of Mx

which is a morphism in ModF . In this way we identify the kernel of Tx → T
with

Hom(VF, VF)GK/HomF (Mx,Mx)
(where HomF (Mx,Mx)) is viewed as a submodule of Hom(VF, VF)GK using
Proposition 6.2.2). This gives the desired bound. □

Corollary 6.3.2. If µ is pseudo-Barsotti–Tate and VF is cyclotomic-free
then the map Tx → Ext1

SD(Mx,Mx) from Proposition 6.1.1 is surjective.
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Proof. If Tx → Ext1
SD(Mx,Mx) is not surjective then the bound in Propo-

sition 6.3.1 would be strict. However, the discussion in the proof of Theo-
rem 3.3.8 illustrates that dimF Tx ≥ d2 + d(µ, µ). □

7. Applications

7.1. Constructing crystalline lifts. Given two Hodge types µ and µ′

we write (µ, µ′) for the Hodge type obtained by taking µij ∪µ′
ij for each ij.

Note that if V and V ′ are crystalline representations of Hodge type µ and
µ′ respectively then V ⊕ V ′ has Hodge type (µ, µ′).

Lemma 7.1.1. Suppose that (M, α,F) and (M′, α′,F ′) respectively cor-
respond to O-valued points in Lµ,conv

RVF
and Lµ′,conv

RV ′
F

and consider an exact
sequence
(7.1.2) 0 −→ (M,F)⊗O F −→ (NF,GF) −→ (M′,F ′)⊗O F −→ 0
in ModSD

F . Assume that µ and µ′ is pseudo-Barsotti–Tate and VF ⊕ V ′
F is

cyclotomic-free. Then there exists a GK-equivariant exact sequence
0 −→ VF −→WF −→ V ′

F −→ 0
which identifies φ,GK∞-equivariantly with (7.1.2) after base-change to
W (C♭), and an O-valued point (N, β,G) ∈ L(µ,µ′),conv

RWF
with N fitting into a

φ-equivariant exact sequence of SO-modules
0 −→M −→ N −→M′ −→ 0

which recovers (7.1.2) after applying ⊗OF.

Proof. The triple (M⊕M′, α ⊕ α′,F ⊕ F ′) can be viewed as an O-valued
point x of L(µ,µ′),conv

RVF⊕V ′
F

. Let xF be the composite SpecF → SpecO x−→

L(µ,µ′),conv
RVF⊕V ′

F
. From (7.1.2) we can construct an exact sequence

0 −→ (M⊕M′,F⊕F ′)⊗OF −→ (N∗
F,G∗

F) −→ (M⊕M′,F⊕F ′)⊗OF −→ 0
recovering (7.1.2) after pulling back2 along (M′,F ′)⊗O F→ (M⊕M′,F ⊕
F ′)⊗OF and then pushing out along (M⊕M′,F⊕F ′)⊗OF→ (M,F)⊗OF.
Corollary 6.3.2 implies that this new exact sequence arises from a tangent
vector t in L(µ,µ′),conv

RVF⊕V ′
F

over the point xF.

As VF and V ′
F are cyclotomic-free the same is true of VF ⊕ V ′

F. Therefore
Theorem 3.3.8 applies and the completed local ring of L(µ,µ′),conv

RVF⊕V ′
F

at xF

2Note that pullbacks and pushouts exist in ModF ; the pushout of two morphisms f : M → N

and g : M → N′ is constructed as the cokernel of (f, −g) : M → N ⊕ N′. Similarly the pullback
of f : M → N and g : M′ → N is constructed as the kernel of f − g : M ⊕ M′ → N. It follows
from Proposition 4.2.1 that these construction respect the full subcategory ModSD

F .



368 Robin Bartlett

is formally smooth over Zp. We claim this implies that we can produce a
dotted arrow making the following diagram commutes:

SpecO L(µ,µ′)
RVF⊕VF

SpecO[ϵ] SpecF[ϵ]

x

Equivalently, we need to show that there exists a dotted arrow making the
diagram

O Ô
L(µ,µ′)

RVF⊕VF
,xF

O[ϵ] F[ϵ]

Since the ring in the top right is formally smooth over O it is isomorphic
to O[[X1, . . . , Xm]] for some m ≥ 0, cf. [16, 2.5]. For i = 1, . . . ,m set xi ∈ m
equal to the image of Xi under the top horizontal arrow. Similarly, let
yi ∈ F so that the right horizontal arrow maps Xi onto ϵyi. If yi ∈ O lift yi

then a dotted morphism can be defined by sending Xi 7→ xi + ϵyi.
Such a dotted morphism gives rise to a φ-equivariant exact sequence

0 −→M⊕M′ −→ N∗ −→M⊕M′ −→ 0

of SO-modules which φ,GK∞-equivariantly identifies with an exact se-
quence of crystalline GK-representations 0→ Vα⊕Vα′ →W ∗ → Vα⊕Vα′ →
0 after base-changing to W (C♭). Pulling back along M′ →M⊕M′ and then
pushing out along M⊕M′ →M produces a φ-equivariant exact sequence

0 −→ (M,F) −→ (N,G) −→ (M′,F ′) −→ 0

and a GK-equivariant exact sequence 0 → Vα → W → Vα′ → 0 of
crystalline representations which φ,GK∞-equivariantly identify after base-
changing to W (C♭). Since the formation of the pullbacks and pushouts
commutes with ⊗OF we recover (7.1.2) after basechanging to F. Thus
W = RWF ⊗β O for some β and (N, β,G) defines an O-point of L(µ,µ′),conv

RWF
as desired. □

Lemma 7.1.3. Suppose that VF is one-dimensional and that (MF, αF,FF)
corresponds to an F-valued xF point of L≤hj ,conv

R with (MF,FF) ∈ ModSD
F

with pseudo-Barsotti–Tate Hodge type µ∗.3 Then there exists an O-valued
point (M, α,F) of Lµ,conv

R inducing xF.

3We point out that every object of ModF of rank one over SF is contained in ModSD
F .
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Proof. Examples 4.5.2 and 5.3.2 indicate that any (MF,FF) can be lifted to
a rank one (M,F) over SO. It is also explained in Example 5.3.2 that any
such rank one M corresponds to a crystalline character. Proposition 5.3.1
(or the calculations made in Example 5.3.2) shows that if (MF,FF) has
Hodge type µ∗ then this character has Hodge type µ. □

Corollary 7.1.4. Continue to assume µ is pseudo-Barsotti–Tate and VF
is cyclotomic-free. Suppose that every Jordan–Holder factor of VF is one-
dimensional and (MF, αF,FF) corresponds to an F-valued point of Lconv

R
with (MF,FF) strongly divisible of type µ∗. Then there exists an O-valued
point (M, α,F) of Lµ,conv

R lying over xF such that every Jordan–Holder
factor of Vα

[1
p

]
is one-dimensional.

Proof. We induct on the dimension of VF. If VF is one-dimensional there
is nothing to prove. For the general case, any GK-equivariant exact se-
quence 0 → VF,1 → VF → VF,2 → 0 induces a unique φ-equivariant exact
sequence 0 → MF,1 → MF → MF,2 → 0 which recovers the sequence of
GK-representations φ,GK∞-equivariantly after base-change to C♭, cf. [2,
5.1.3]. By equipping MF,i with the appropriate filtrations we view this as a
sequence in ModF . Proposition 4.5.3 implies that if MF,i has Hodge type µi

then µ = (µ1, µ2). Both VF,i are also cyclotomic-free and so our inductive
hypothesis produces lifts of MF,i. Using Lemma 7.1.1 we obtain such a lift
for VF also. □

7.2. Potential diagonalisability. Let V be a GK-stable O-lattice inside
a crystalline representation of Hodge type µ and set VF = V ⊗O F. Follow-
ing [1] we say V is diagonalisable if V lies on the same irreducible component
of SpecRµ (equivalently the same irreducible component of SpecRµ

[1
p

]
) as

an E′-valued point, for E′/E finite, which is a direct sum of characters.
We say V is potentially diagonalisable if V |GK′ is diagonalisable for K ′/K
some finite extension.

Lemma 7.2.1. If V
[1

p

]
lies in the same irreducible component of SpecRµ

as an E′-valued point whose corresponding representation admits a GK-
stable filtration with one-dimensional graded pieces then V is potentially
diagonalisable.

Proof. See [7, 2.1.2]. □

Corollary 7.2.2. If µ is pseudo-Barsotti–Tate and VF is cyclotomic-free
then V is potentially diagonalisable.

Proof. We can replace V by V |GK′ for any finite extension K ′/K. Since
VF is cyclotomic-free we can choose K ′ so that VF|GK′ has one-dimensional
Jordan–Holder factors and is also cyclotomic-free. Let x be the O-valued
point of Lµ,conv

R corresponding to the O-valued point of SpecRµ associated
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to V . Corollary 7.1.4 produces an O-valued point x′ such that (i) x and
x′ coincide on the closed point of SpecO, and (ii) SpecO x′

−→ Lµ,conv
R →

SpecRµ corresponds to a deformation V ′ with every Jordan–Holder factor
of V ′[1

p

]
one-dimensional. Part (i) implies x and x′ lie in the same connected

component of Lµ,conv
R , and so the same irreducible component in view of

Theorem 3.3.8. Hence V and V ′ lie on the same irreducible component of
SpecRµ. As V ′ is potentially diagonalisable by Lemma 7.2.1 so is V . □
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