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Spherical Heron triangles and elliptic curves

par Tinghao HUANG, Matilde LALÍN et Olivier MILA

Résumé. Nous définissons les triangles de Héron sphériques (triangles sphé-
riques avec des mesures de côtés et des angles « rationnels ») et les paramé-
trons par des points rationnels en certaines familles de courbes elliptiques.
Nous montrons que le problème des nombres congruents a une infinité de
solutions pour la plupart des valeurs de l’aire dans le cas sphérique et nous
trouvons un triangle de Héron sphérique avec des médianes rationnelles. Nous
explorons également la question des triangles sphériques avec une seule mé-
diane rationnelle ou une seule bissectrice d’aire rationnelle (c’est-à-dire, une
médiane divisant le triangle en deux), et nous discutons de divers problèmes
impliquant des triangles sphériques isocèles.

Abstract. We define spherical Heron triangles (spherical triangles with “ra-
tional” side-lengths and angles) and parametrize them via rational points of
certain families of elliptic curves. We show that the congruent number prob-
lem has infinitely many solutions for most areas in the spherical setting and
we find a spherical Heron triangle with rational medians. We also explore the
question of spherical triangles with a single rational median or a single a ra-
tional area bisector (median splitting the triangle in half), and discuss various
problems involving isosceles spherical triangles.

1. Introduction

Problem D21 in Guy’s book [15] asks whether there are any triangles
whose area is rational and whose sides and medians have rational lengths.
The question of rational medians was already considered by Euler [12], who
parametrized triangles whose medians are rational, but without imposing
the other conditions. To this day Guy’s problem D21 remains open. Buch-
holz and Rathbun [7, 8] parametrized families with two rational medians
using elliptic curves. Other authors have worked with the elliptic curves
that appear from this problem [10, 11, 19]. More generally, Heron triangles
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(triangles with rational side lengths and rational area) have been exten-
sively studied by various authors [2, 4, 14, 16, 18, 21, 24, 28, 33]. More
general cevians were studied in [6, 22].

In [17] Hartshorne and van Luijk introduced the idea of studying rational-
ity of lengths in hyperbolic triangles. The second and third named authors
followed this idea and studied various problems related to finding rational
cevians in hyperbolic triangles [23]. It should be noted that a slightly differ-
ent notion of rationality for hyperbolic triangles was considered by Brody
and Schettler in [5].

In this work we study some analogous problems for spherical triangles.
To do this, we need to define the idea of rationality in this context. A
spherical triangle is a triangle on the surface of the unit sphere whose sides
are given by arcs in great circles, i.e., it is determined by the intersections
of three planes passing through the center of the sphere with the surface of
the sphere. We will focus on proper triangles, which satisfy that the sides
a, b, c and the angles α, β, γ are smaller than π. Thus, in a proper spherical
triangle, we have

π < α + β + γ < 3π

and
0 < a + b + c < 2π.

The Gauss–Bonnet theorem implies that the area of such spherical triangle
is given by

(1.1) A = α + β + γ − π.

Following a convention analogous to what was adopted in [17, 23], we will
call an angle ω, the area A, or a length x rational if and only if the sines and
cosines of these quantities are rational, or equivalently, if eiω, eiA, or eix ∈
Q(i). In particular, notice that if α, β, and γ are rational, equation (1.1)
implies that so is the area A.

Recall that eix ∈ Q(i) if and only if cos(x) = 1−t2

1+t2 and sin(x) = 2t
1+t2 for

some t ∈ Q. Indeed, we have

eix = i − t

i + t
∈ Q(i) ⇐⇒ t = sin(x)

1 + cos(x) ∈ P1(Q)

⇐⇒ (cos(x), sin(x)) =
(

1 − t2

1 + t2 ,
2t

1 + t2

)
.(1.2)

By abuse of terminology we will call t the rational side (resp. rational angle)
of a spherical triangle if its side (resp. angle) is x.

In sum, a spherical triangle with area A, angles α, β, γ and sides a, b, c
is a spherical Heron triangle or spherical rational triangle if

eia, eib, eic, eiα, eiβ, eiγ ∈ Q(i),
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Figure 1.1. A spherical triangle.

and this implies that eiA ∈ Q(i) as well.
One of the goals of this article is to compare the situation in the spherical

and hyperbolic worlds. In this sense, some of our results will be analogous
to the ones in [23].

First we treat the generation of spherical Heron triangles. If we fix two
sides, we obtain the following result.

Theorem 1.1. For all but finitely many choices of rational sides with pa-
rameters u and v there are infinitely many spherical triangles such that the
third side and the angles are rational.

This result is completely analogous to [23, Theorem 3]. It is achieved by
parametrizing such triangles with points in the elliptic curve

y2 = x(x − (v + v−1)2)(x − (w + w−1)2)

and showing that for most values of v, w ∈ Q, this elliptic curve has positive
rank.

Another approach, which follows naturally from extending the congruent
number problem and the techniques of [14], is to fix an angle and the area.
While this was achieved for the hyperbolic case in [23, Theorem 1, Corol-
lary 2], we encounter a difficulty here, as we are not able to construct the
corresponding elliptic curve over Q. Instead, we consider some particular
cases. For the spherical congruent number problem, we obtain

Theorem 1.2. For all rational areas m ̸= 0, ±1 there are infinitely many
area m right spherical triangles with rational angles and sides. In addi-
tion, there exists a single solution for the cases m = 1. Thus, the spherical
congruent number problem has a positive solution for m ̸= 0, −1.

This is achieved by working with the elliptic curve

y2 = x(x − 2m(m2 + 1))(x − 4m(m2 + 1)).
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It is also known that the congruent number problem has a positive solution
in the hyperbolic space [23]. Thus, the Euclidean plane is very special from
this point of view.

We also consider the case of an isosceles triangle in this context, and
likewise obtain infinitely many Heron isosceles triangles with prescribed
area and repeated angle, for most choices of the parameters.

A surprising result in the spherical setting is that problem D21 has a
positive solution.

Theorem 1.3. There exists a unique rational equilateral spherical Heron
triangle whose sides have lengths π

2 and whose angles measure π
2 . The me-

dians of this triangle measure π
2 and are, therefore, rational.

This is contrary to the Euclidean plane and hyperbolic settings, where
such equilateral triangle do not exist. More precisely, this is the first setting
in which a positive solution can been found for the problem D21.

We also explore and find positive results for the existence of triangles with
rational sides and one rational median, isosceles triangles with rational sides
and two rational medians, and certain existence results involving a rational
area bisector. The results are analogous to what is known for the hyperbolic
case.

Finally we embark on a detailed study of isosceles triangles with meridi-
ans and equators as sides. For these particular triangles, one has a guaran-
teed rational median/bisector/height, and the goal is to find that the other
two cevians are rational. We obtain a positive result with infinitely many
solutions for the heights, while the medians and bisectors reduce to only
one solution given by the equilateral triangle from the D21 problem. We
also consider the area bisector and obtain a negative result in this case. The
problem in this case depends on a non-trivial argument (originally due to
Flynn and Wetherell [13]) for finding all the rational points of a bielliptic
curve of genus 2.

The main geometric tools we will use are the following basic results
of spherical trigonometry. A basic reference is [34]. Consider a spherical
triangle with area A, angles α, β, and γ and side lengths a, b, and c, where
a (resp. b, c) is opposite to α (resp. β, γ).

The spherical law of cosines says

(1.3) cos(c) = cos(a) cos(b) + sin(a) sin(b) cos(γ),

and similarly for cos(a), cos(b).
The dual of (1.3) is the supplemental law of cosines, which says

(1.4) cos(γ) = − cos(α) cos(β) + sin(α) sin(β) cos(c),

and analogously for cos(α), cos(β).
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The spherical law of sines gives

(1.5) sin(α)
sin(a) = sin(β)

sin(b) = sin(γ)
sin(c) .

This paper is organized as follows. Section 2 and Section 3 cover the
parametrization of spherical Heron triangles in terms of angles and sides
respectively. Section 4 is focused on medians in the simple case of equilateral
triangles and includes the proof of Theorem 1.3. Section 5 includes the
parametrization of spherical triangles with rational side lengths and one
rational median, while Section 6 is devoted to the dual computation of the
parametrization of spherical Heron triangles with one rational area bisector.
Isosceles triangles with meridians and equator as sides are considered in
Section 7. We close the paper with Section 8, where we discuss variations of
the definition of rationality that could lead to future directions of research.

Acknowledgements. The authors are grateful to the referee for their ex-
ceptionally dedicated work and many helpful remarks and crucial correc-
tions.

2. Spherical Heron triangles - Angle parametrization

In this section we give a parametrization of spherical Heron triangles in
terms of angles and area. We consider a triangle with angles α, β, γ ∈ (0, π)
that are rational (as defined in the introduction). Since the area is given
by equation (1.1), it is also rational.

The supplemental spherical law of cosines (1.4) implies that the cosines
of the sides are also rational, and it remains to check that the sines of the
sides are rational.

The spherical law of sines (1.5) implies that

sin(a) sin(β) sin(γ) = sin(b) sin(α) sin(γ) = sin(c) sin(α) sin(β).

We call this common quantity ∆1; observe that it is rational if and only if
the sines of all the sides are rational. Squaring the supplemental spherical
law of cosines (1.4), we get

sin2(α) sin2(β)(1 − sin2(c)) = (cos(γ) + cos(α) cos(β))2.

This leads to

(2.1) ∆2
1 = sin2(α) sin2(β) − (cos(γ) + cos(α) cos(β))2 ∈ Q.

We remark that this expression is very similar to [23, Eq. (6)], except
that there is a sign difference on the right-hand side. From this point we
can follow the treatment from [23]. Using trigonometric identities, we can
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rewrite this as a symmetric expression in α, β, γ:

2∆2
1 = − cos(−α + β + γ) − cos(α − β + γ) − cos(α + β − γ)

− cos(α + β + γ) − cos(2α) − cos(2β) − cos(2γ) − 1.

Substituting for γ = A + π − α − β, expanding the cosines, and writing
cA = cos(A), sA = sin(A), etc., we have

(2.2) 2∆2
1 = −(c2

A − s2
A)
[
(cαcβ − sαsβ)2 − (cαsβ + cβsα)2]

− 4cAsA

[
cαsα(c2

β − s2
β) + cβsβ(c2

α − s2
α)
]

+ cA

[
(cαcβ − sαsβ)2 − (cαsβ + cβsα)2 + 2c2

α + 2c2
β − 1

]
+ 4sA(cαsαc2

β + cβsβc2
α) − 2c2

α − 2c2
β + 1.

Since we wish to express this in terms of rational angles, we set

t = sin(α)
1 + cos(α) , u = sin(β)

1 + cos(β) , m = sin(A)
1 + cos(A) ,

and w = (m2 + 1)(u2 + 1)(t2 + 1)∆1, equation (2.2) rewrites as:

(2.3) w2 = −4m(mu2 − m + 2u)(mt2 + 2t − m)
×
[
(mu2 −m+2u)t2 + (−4mu+2u2 −2)t − mu2 + m − 2u

]
.

Here we differ from the situation of [23, Eq. 8], where we were able to find a
change of variables {t, w} → {x, y} turning the equation into a Weierstrass
form. In this case, having the opposite sign on the right-hand side of (2.3)
creates an obstruction to find a general solution to the equation that is
defined over Q(u, m). By twisting w by i, one can actually recover the
change of variables leading to [23, Eq. 9], which in this case it will not be
defined over Q(u, m), but over Q(i)(u, m). In [23, Lemma 2.1], a point of
infinite order P over Q(u, m) was found, but this will only lead to a point
over Q(i)(u, m) after twisting. In our case, we will not be able to conclude
that our problem over the spherical side has infinite solutions.

Instead, we proceed to examine two particular cases of interest: u = 1 (a
right triangle) and u = t (an isosceles triangle).

2.1. The case u = 1. By setting u = 1 equation (2.3) becomes

w2 = −16m(mt2 + 2t − m)(t2 − 2mt − 1)

with a solution (t, w) = (1, 8m).
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By applying the change of variables

y = m

(t − 1)3 [(1 + 2m − m2)(4mt3 − 12mt − w)
+ (1 − 2m − m2)(12mt2 − 4m + wt)],

x = m(4(m2t2 − (m − 1)2t + 1) + w)
(t − 1)2 ,

we obtain the Weierstrass form

(2.4) Eu=1 : y2 = x(x − 2m(m2 + 1))(x − 4m(m2 + 1)).

Notice that the pole at (t, w) = (1, 8m) corresponds to the infinity point
at Eu=1. In fact, one can write an inverse change (t, w) = (t(x, y), w(x, y))
and the above change is birational.

We remark that (2.4) appeared in [23]. In fact, it was proven that
E(C(m)) is a K3-surface of rank 2, and that P (m) = ((m2 + 1)(m + 1)2,
(m2 + 1)2(m2 − 1)) and Q(m) = (2m(m + 1)2, 4im2(m2 − 1)) are two inde-
pendent points of infinite order.

We claim that for every rational value of m /∈ {−1, 0, 1}, the point P (m)
has infinite order on Eu=1. Indeed, Mazur’s Theorem (see [25, 26]) implies
that the torsion group of a rational elliptic curve has order at most 16.
By looking at the points on Eu=1 of the form ±kP (m) + ℓ(0, 0) for k ∈
{1, 2, 3, 4}, ℓ ∈ {0, 1}, we see that we generically get 16 different points.
Thus for each value of m, either one of these points is non-torsion (from
which it follows easily that P (m) has infinite order), or they are all torsion.
In the latter case, together with (0, 0) we have 17 points, so two points of
this list must coincide, and it is easily verified by looking at the equations
for these points that this is only possible if m ∈ {−1, 0, 1}.

Finally, observe that the conditions (e.g., sum of angles > π, etc.) for a set
of parameters (α, β, γ, A) to give rise to an actual spherical triangle trans-
late into open conditions (i.e., involving strict inequalities) on the variables
t, u, m, which in turn also translate into open conditions on the variables
x, y, m. Now by a theorem of Poincaré–Hurwitz (see [32, Satz 11, p. 78])
the points Eu=1(Q) form a dense subset of Eu=1(R) as long as Eu=1(Q) is
infinite and intersects both connected components of Eu=1(R). Since the
three torsion points having y = 0 are rational (and lie across both con-
nected components of Eu=1(R)), and since unless m ∈ {−1, 0, 1}, the point
P (m) is a rational point of infinite order, we have proven the following:

Theorem 2.1 (Theorem 1.2 in the introduction). For every rational m ̸=
−1, 0, 1, the congruent number problem has infinitely many solutions in the
spherical context. More precisely: for all rational areas m ̸= −1, 0, 1 there
are infinitely many area m right spherical triangles with rational angles and
sides.
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Note that this type of argument will be used later in the text to deduce
existence of infinitely many triangles with given properties from elliptic
curves having positive rank.

Observe that in the case m = 1, the elliptic curve has rank zero, and
using the change of variables (when it is defined) it is possible to show that
the only solution is with t = 1. This corresponds to a triangle having area π

2
(since m = 1) and 2 angles also equal to π

2 (since u = t = 1). Thus by (1.1),
the third angle is also π

2 , and the only rational triangle with area and one
angle equal to π

2 is the unique rational equilateral triangle, with all sides,
angles and area equal to π

2 .
The case m = 0 corresponds to A = 0 or A = 2π, which is geometrically

impossible.
The case m = −1 corresponds to A = 3π

2 . The elliptic curve has again
rank zero, and using the change of variables we deduce that the only possible
solution with m = −1 occurs with t = 1, but this leads to an angle of 3π

2 ,
which is not admissible.

Finally, when m = ∞, we have A = π. Since we also have u = 1 and
β = π

2 , equation (2.2) then becomes

∆2
1 = −2c2

α + 1.

Multiplying by (t2 + 1)2 and setting w1 = ∆1(1 + t2), we have

w2
1 = −t4 + 6t2 − 1,

which is birational to the Weierstrass form

(2.5) y2 = x(x − 4)(x − 8)

with the change of variables

y = 8(t + 1)(t2 − 4t + 1 + w1)
(t − 1)3 , x = 4(t2 + 1 − w1)

(t − 1)2 .

The curve (2.5) has four points, namely O, (0, 0), (4, 0) and (8, 0). They lead
to the rational solutions (t, w1) = (±1, ±2), which lead only to degenerate
solutions.

2.2. The case u = t. By setting u = t, and w = w1(mt2 + 2t − m),
equation (2.3) becomes

w2
1 = −4m(mt4 + 4t3 − 6mt2 − 4t + m)
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with particular solution (t, w1) = (1, 4m). We apply Cassels’ algorithm [9,
p. 37] and find the change of variables

y = m

2(t − 1)3
[
−2m(m + 1)t3 + 6m(m − 1)t2 + 6m(m + 1)t

+ 2m(1 − m) + (mt + m − t + 1)w1
]
,

x = m(4mt − 2t2 + 2 + w1)
2(t − 1)2 ,

that leads to the Weierstrass form
(2.6) Eu=t : y2 = x(x2 − m2(1 + m2)).

Lemma 2.2. The rank of the rational elliptic surface Eu=t(C(m)) is 2. Its
torsion group is isomorphic to Z/2Z. The points

P (m) =
(
−m2, m2), Q(m) =

(
m(im − 1), (i + 1)m2(im − 1)

)
,

are generators of the free subgroup.

Proof. Notice that Eu=t is a rational elliptic surface with discriminant
disc(Eu=t) = 64m6(m2 + 1)3. By Tate’s algorithm [31, IV.9] Eu=t has sin-
gularities at m = 0 of type I∗

0 , and m = ±i of type III. By the Shioda–Tate
formula [29, Corollary 6.7], the rank of the Néron–Severi group is given by

(2.7) ρ(E) = rk(E(C(m)) + 2 +
∑

ν

(mν − 1),

where the sum goes over all the singular places ν and mν is the number of
components of the singular fiber at ν.

In our case, we obtain
ρ(Eu=t) = rk(Eu=t(C(m)) + 2 + (5 − 1) + 2 · (2 − 1) = rk(Eu=t(C(m)) + 8.

Since ρ(Eu=t) = 10 for rational elliptic surfaces, we conclude that
rk(Eu=t(C(m)) = 2.

By [27, Table 4.5], since the rank is R = 2 and the Euler characteristic
is χ = 1, we conclude that the torsion is either Z/2Z or Z/2Z × Z/2Z, but
it is very clear that the only point of order 2 is (0, 0), and therefore the
torsion is Z/2Z.

Now, if one only wants to show that P (m) and Q(m) are independent
points of infinite order, the easiest way is to specialize at m = 1 and verify
(using Sage for instance) that the corresponding curve has rank 2 over Q(i)
and admits those points as generators of the free part. (In fact, checking
that P (m) is of infinite order is even easier: at m = 1, we get the point P =
(−1, 1) on the curve y2 = x(x2 −2). Since torsion injects into specialization
and 2P = (9

4 , −21
8 ) has non-integral coordinates, one concludes that P

can not be torsion due to the Nagell–Lutz theorem.) However, proving that
they are actually generators is more involved. We can do this by computing



228 Tinghao Huang, Matilde Lalín, Olivier Mila

the height pairing of the Mordell–Weil group on the elliptic surface Eu=t.
In order to do this we need to find the height pairing of both points. By
formulas (6.14) and (6.15) in [29],

⟨P, Q⟩ = χ + (P.O) + (Q.O) − (P.Q) −
∑

ν

contrν(P, Q),(2.8)

h(P ) := ⟨P, P ⟩ = 2χ + 2(P.O) −
∑

ν

contrν(P ),(2.9)

and similarity for Q. In the above formulas, (P.Q) represents the intersec-
tion multiplicity of P and Q and contrν(P, Q) represent certain correction
terms given by the local contribution from the fiber at ν (see [29, Defini-
tion 6.23]).

We look at [29, Table 6.1]. For the singularity at m = 0 of type I∗
0 , we

get contr0 = 1 unless the point intersects Θ0 in the fiber. We have that
P (0) = Q(0) = (0, 0) (the singular point), so they do not intersect Θ0 and
therefore contr0(P ) = contr0(Q) = 1. We also have that contr0(P, Q) = 1/2
since they do not intersect the same component.

For the singularities ±i, of type III, we have that P (i) = P (−i) =
(−1, 1) ̸= (0, 0) (the singular point is again (0, 0)) so we get contr±i(P ) = 0
since it intersects Θ0. We have that Q(i) = (−2i, 2 + 2i) ̸= (0, 0), so that
contri(Q) = 0, but Q(−i) = (0, 0), so that contr−i(Q) = 1/2. Finally we
have contr±i(P, Q) = 0 since they intersect different components.

We also have that P ·O = Q·O = 0, since the coordinates are polynomials,
and P ·Q = 0 since the points do not intersect the same component at (0, 0),
which is the only possible point where P = Q.

Since χ = 1, we obtain from (2.9) that h(P ) = 2 · 1 + 2 · 0 − 1 − 2 · 0 = 1,
h(Q) = 2 · 1 + 2 · 0 − 1 − 0 − 1/2 = 1/2 and from (2.8), ⟨P, Q⟩ = 1 + 0 + 0 −
0 − 1/2 − 2 · 0 = 1/2.

On the one hand, we can compute the determinant of the Gram matrix
associated to the height pairing of P and Q. This gives

(2.10)
∣∣∣∣ 1 1/2

1/2 1/2

∣∣∣∣ = 1
4 .

On the other hand, by the Determinant formula [29, Corollary 6.39]), we
have

(2.11) |disc NS(Eu=t)| = |disc Triv(Eu=t) · disc MWL(Eu=t)|
|Eu=t(C(v))tor|2

,

where MWL(Eu=t) is the Mordell–Weil lattice and Triv(Eu=t) is the trivial
lattice.

By [30, Definition 7.3],

(2.12) disc Triv(Eu=t) =
∏
ν

m(1)
ν ,
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where m
(1)
ν is the number of simple components of the corresponding sin-

gular fiber. We have m
(1)
ν = 2 if ν is of type III and m

(1)
ν = 4 if ν is of type

I∗
0 . We thus get

disc Triv(Eu=t) = 16.

Since disc NS(Eu=t) = −1 (as the Néron–Severi lattice of a rational el-
liptic surface is unimodular) and |Eu=t(C(m))tor| = 2, equation (2.11) be-
comes

(2.13) |disc MWL(Eu=t)| = 1
4 .

In conclusion, we have obtained the same value as in (2.10), this proves
that the points P, Q are generators for the free part of Eu=t(C(m)). □

Using arguments similar to those in the proof of Theorem 2.1, one gets:

Theorem 2.3. For all but finitely many combinations of rational area m
and rational angle u there are infinitely many isosceles spherical triangles
with area m and the repeated angle u such that the third angle and the sides
are rational.

3. Spherical Heron triangles - Side length parametrization

In this section we parametrize spherical Heron triangles given by their
side lengths. Let a, b, c denote the side lengths of a spherical triangle,
and assume that they are rational (as defined in the introduction, i.e.,
eia, eib, eic ∈ Q(i)). Let α (resp. β, γ) be the angles opposing the sides of
length a (resp. b, c). By the spherical law of cosines (1.3) the cosines of the
angles are also rational, and it remains to check that the sines of the angles
are rational.

The spherical law of sines (1.5) implies that
sin(α) sin(b) sin(c) = sin(β) sin(a) sin(c) = sin(γ) sin(a) sin(b).

Call this quantity ∆2; it is rational if and only if the sines of all the angles
are rational.

As in Section 2, we square the spherical law of cosines (1.3) to get
sin(a)2 sin(b)2(1 − sin(γ)2) = (cos(a) cos(b) − cos(c))2.

Hence
(3.1) ∆2

2 = sin(a)2 sin(b)2 − (cos(a) cos(b) − cos(c))2 ∈ Q.

Applying the change of variables

u = sin(a)
1 + cos(a) , v = sin(b)

1 + cos(b) , w = sin(c)
1 + cos(c) ,

we get the equation
D2 = (−uvw+u+v+w)(uvw−u+v+w)(uvw+u−v+w)(uvw+u+v−w),
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where D = 1
2(u2 + 1)(w2 + 1)(v2 + 1)∆2. This has a solution (u, D) =

( v+w
1−vw , 0). Applying [9, p. 37], we find the change of variables

y = (v + v−1)(w + w−1)(v + w)(vw − 1)D
vw(uvw − u + v + w)2 ,

x = −(v + v−1)(w + w−1)(uvw − u − v − w)
uvw − u + v + w

,

that yields the Weierstrass form

(3.2) Ev,w : y2 = x(x − (v + v−1)2)(x − (w + w−1)2).

We remark the similarity of (3.2) with [23, Eq. 12]. Indeed, both curves are
isomorphic, we can go from one to the other by the change (x, y) → (−x, iy),
(v, w) → (iv, iw). Applying this to [23, Lemma 3.1] we immediately obtain
the following result.

Lemma 3.1. Let Ev denote the K3-surface over C(w) resulting from fixing
the parameter v. Its rank satisfies

1 ≤ rk(Ev(C(w))) ≤ 2.

In addition, the torsion group of Ev is isomorphic to Z/4Z×Z/2Z, gener-
ated by

S0(v, w) =
(
(v + v−1)(w + w−1), i(v + v−1)(w + w−1)(v−1 − w−1)(vw − 1)

)
and

S1(v, w) =
(
(v + v−1)2, 0

)
.

Finally, the point

R(v, w) =
(
vw(v + v−1)(w + w−1), (v + v−1)(w + w−1)(v2w2 − 1)

)
has infinite order on E.

Finally, an argument as in Theorem 2.1 gives:

Theorem 3.2 (Theorem 1.1 in the introduction). For all but finitely many
choices of rational sides with parameters u and v there are infinitely many
spherical triangles such that the third side and the angles are rational.

4. Equilateral triangles

The goal of this section is to explore the existence of equilateral spherical
Heron triangles. In fact, we prove:

Theorem 4.1 (Theorem 1.3 in the introduction). There exists a unique
rational equilateral spherical Heron triangle given by a = b = c = π

2 and
α = β = γ = π

2 .
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We remark that for the triangle described in Theorem 1.3 the medians
have the same lengths as the sides and thus they are rational. Therefore,
this provides a positive answer to the problem D21 in the spherical world.

Proof. For this we go back to equation (2.1), where we set α = β = γ:

∆2
1 = 1 − 3 cos2(α) − 2 cos3(α) = (1 − 2 cos(α))(cos(α) + 1)2.

Setting u = ∆1
cos(α)+1 , the above equation can be rewritten as u2 = 1 −

2 cos(α). Thus the solutions to the original equation are parametrized by

(4.1) cos(α) = 1 − u2

2 and ∆1 = u(3 − u2)
2 .

Squaring the first equation of (4.1), writing 4 cos(α)2 = 4 − 4 sin2(α), and
setting v = 2 sin(α), we obtain

v2 = −u4 + 2u2 + 3.

Making the change of variables

y = 2v + 3 − u3 + u2 + u

(u − 1)3 , x = v + 2
(u − 1)2 ,

we get
E : y2 = x(x2 − x + 1),

and this curve has rank 0. It is not hard to see that

E(Q) = {O, (0, 0), (1, ±1)} ∼= Z/4Z.

These points only yield to solutions of the form sin(α) = ±1, cos(α) = 0,
thus leading to a triangle whose angles and sides are all equal to π

2 . □

If we relax the condition that the angles be rational, we find another
surprising result.

Proposition 4.2. The only equilateral triangle that has rational sides and
rational medians is the one that satisfies a = b = c = π

2 and α = β = γ = π
2 .

Proof. Consider an equilateral spherical triangle of side lengths a and angles
α. Let m denote the length of the median, and consider the half triangle
defined by one median. This triangle has angles α, α

2 , π
2 and sides a, a

2 , m.
Assume the length a is rational, i.e., that eia ∈ Q(i). By the Pythagorean

theorem (a particular case of the law of cosines (1.3)),

(4.2) cos(m) cos
(

a

2

)
= cos(a).

We immediately see that the above equation has a solution when m =
a = π

2 , when both sides of (4.2) equal zero. Otherwise, we remark that
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cos(m) ∈ Q if and only if p = cos(a
2 ) ∈ Q. Let t = sin(m). Squaring (4.2),

we get the following equation for t:

(1 − t2)p2 = (2p2 − 1)2 i.e. s2 = −4p4 + 5p2 − 1,

writing s = pt. Changing variables

s = 6y

x2 , p = x − 6
x

, y = 6s

(p − 1)2 , x = − 6
p − 1 ,

we get the following elliptic curve:

y2 = x3 − 19x2 + 96x − 144 = (x − 3)(x − 4)(x − 12).

This elliptic curve has rank 0 and

E(Q) = {O, (3, 0), (4, 0), (12, 0)} ∼= Z/2Z × Z/2Z.

Taking x = 3, 4, 12 and considering the point O gives p = ±1, ±1
2 , and

a
2 = kπ, ±π

3 + kπ for k ∈ Z. However, since 0 < a < 2π
3 , all these cases are

eliminated. □

Similarly, relaxing the condition that the sides be rational, we get:

Proposition 4.3. The only equilateral triangle that has rational angles and
rational medians is the one that satisfies a = b = c = π

2 and α = β = γ = π
2 .

Proof. The proof of this result proceeds in the same vein as the previous
proposition. In this case the starting point in the Pythagorean theorem as
a particular case of the supplementary law of cosines (1.4):

(4.3) cos(m) sin
(

α

2

)
= cos(α).

We immediately see the solution α = π
2 with m = π

2 . Notice that in general
π
3 < α < π, and therefore sin(α

2 ) ̸= 0. We remark that cos(m) ∈ Q if and
only if p = sin(α

2 ) ∈ Q. Let t = sin(m). Squaring (4.3), we get the following
equation for t:

(1 − t2)p2 = (1 − 2p2)2,

writing s = pt. This reduces to the same elliptic curve as in the previous
result:

y2 = x3 − 19x2 + 96x − 144 = (x − 3)(x − 4)(x − 12).

Taking x = 3, 4, 12 and considering the point O gives p = ±1, ±1
2 , and

α
2 = ±π

2 + kπ, ±π
6 + kπ for k ∈ Z. Since π

3 < α < π, all these cases are
eliminated. □
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5. Rational medians

The goal of this section is to study spherical triangles with one rational
median. We consider a spherical triangle with sides a, b, c and opposite
angles α, β, γ as before. Let m denote the median at the angle α, cutting
the side a into two equal parts. Denote by θ the angle at the intersection
of m and a on the side of β (the one on the side of γ is π − θ). Applying
the law of cosines (1.3) to both triangles, we have

cos(b) = cos(m) cos(a/2) + sin(m) sin(a/2) cos(π − θ),
cos(c) = cos(m) cos(a/2) + sin(m) sin(a/2) cos(θ).

Combining both equations, we obtain
(5.1) 2 cos(m) cos(a/2) = cos(b) + cos(c).
We assume that a, b, c are rational, i.e., eia, eib, eic ∈ Q(i). Then for cos(m)
to be rational it is necessary and sufficient that cos(a/2) be rational. Since
a is already rational, this is equivalent to a/2 being rational. We need in
addition that sin(m) be rational. For this, we square equation (5.1) and
obtain that
(5.2) 4 cos2(a/2) − (cos(b) + cos(c))2 = 4 sin2(m) cos2(a/2).
We remark that the right-hand side of (5.2) should be the square of a
rational number.

Let

w = sin(a/2)
1 + cos(a/2) , u = sin(b)

1 + cos(b) , v = sin(c)
1 + cos(c) .

After simplification, we must solve
(1 − w2)2(1 + u2)2(1 + v2)2 − (1 + w2)2(1 − u2v2)2 = t2.

By applying the change of variables

y = 4(u2 + 1)2(w2 − 1)
(uv − 1)3 [2u2v3w4 + v3w4 + u5v2w4 + 3u3v2w4 + uv2w4

+ u4vw4 + 3u2vw4 + vw4 + u5w4 + 2u3w4 − 4u4v3w2 − 4u2v3w2

− 2v3w2 − 2u5v2w2 − 2u3v2w2 − 2uv2w2 − 2u4vw2 + tu2vw2

− 2u2vw2 + tvw2 − 2vw2 − 2u5w2 + tu3w2 − 4u3w2 + tuw2 − 4uw2

+ 2u2v3 + v3 + u5v2 + 3u3v2 + uv2 + u4v − tu2v + 3u2v − tv + v + u5

− tu3 + 2u3 − tu],

x = 2(u2 + 1)2(w2 − 1)
(uv − 1)2

× [u2v2w2 + v2w2 + u2w2 + w2 − u2v2 − v2 − u2 + t − 1],
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we get the Weierstrass form

(5.3) Eu,w : y2 = x
[
x2 − 4(u4w4 + 3u2w4 + w4 − 2u4w2

− 2u2w2 − 2w2 + u4 + 3u2 + 1)x
+ 4(u2 + 1)4(w − 1)2(w + 1)2(w2 + 1)2].

Thus, we obtain the following result.

Theorem 5.1. A spherical triangle with rational side b with parameter u
and rational half-side a/2 with parameter w has a rational median (inter-
secting the side a) if and only if it corresponds (using the above change of
variables) to a rational point on the elliptic curve Eu,w.

Again in this case we can be more specific about the arithmetic structure
of Eu,w.

Lemma 5.2. Let Eu (respectively Ew) denote the K3-surface over C(w)
(resp. C(u)) resulting from fixing the parameter u (resp. w). The rank of
Eu(C(w)) satisfies

2 ≤ rk(Eu(C(w))) ≤ 6,

while the rank of Ew(C(u)) satisfies

2 ≤ rk(Ew(C(u))) ≤ 4.

In addition, the torsion groups of Eu and Ew are isomorphic to
Z/2Z, generated by (0, 0).

Finally, the points

P (u, w) =
(
(u2 + 1)2(w2 + 1)2, (u2 − 1)(u2 + 1)2(w2 + 1)3)

and
Q(u, w) =

(
4u2(w2 + 1)2, 4u(u4 − 1)(w2 − 1)(w2 + 1)2)

have infinite order on Eu,w and are independent.

Proof. First notice that the discriminant of Eu,w is given by

disc = 4096(u2 + 1)8(w − 1)4(w + 1)4(w2 + 1)4(w2 − 2u2 − 1)
× (u2w2 − u2 − 2)(u2w2 + 2w2 − u2)(2u2w2 + w2 − 1).

First look at Eu(C(w)). We have singularities at w = ±1, ±i of type I4, and
w = ±

√
2u2 + 1, ±

√
u2+2
u , ± u√

2+u2 , ± 1√
2u2+1 of type I1. Applying Shioda–

Tate formula (2.7),

ρ(Eu) = rk(Eu(C(w)) + 2 + 4 · (4 − 1) = rk(Eu(C(w)) + 14,

and since ρ(Eu) ≤ 20 for K3-surfaces, we can bound the rank by 6.
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For Ew(C(u)), we have singularities at u = ±i of type I8 as well as at
the roots of the other polynomials of type I1. Shioda–Tate formula (2.7)
gives

ρ(Ew) = rk(Ew(C(u)) + 2 + 2 · (8 − 1) = rk(Ew(C(u)) + 16,

and since ρ(Eu) ≤ 20, we can bound the rank by 4.
The lower bound for the rank will follow from the fact that P (u, w)

and Q(u, w) are independent points of infinite order. This can be de-
duced directly from specializing at u = 2 and w = 2. Indeed, for these
values, we obtain the Weierstrass form y2 = x(x2 − 1300x + 562500),
P = (625, 9375), Q = (400, 9000). Notice that 2P = (3025

36 , −1343375
216 ) and

2Q = (648025
1296 , −420552125

46656 ), which have non-integral coordinates, showing
that P and Q are of infinite order. Moreover, the Mordell–Weil group
has rank 2 with generators of the free part given by A = (50, 5000) and
B = (1250, 25000), and one verifies directly that P = A − B and Q = 2B.
Thus these points are of infinite order and independent at this specializa-
tion, and since any relation of dependence or finite order would automati-
cally descend to the specialization, we conclude that these points are also
independent and of infinite order over C(u, v).

Finally, we can see by inspection that Eu and Ew has one point of torsion
2, namely (0, 0), and no points of order 3 or 4. By [27, Table 4.5], since the
rank of either Eu or Ew is R ≥ 2 and the Euler characteristic is χ = 2, the
torsion group must be Z/2Z. □

5.1. The case a = b. Here we set a = b in the previous discussion. The
goal is to obtain two (equal) rational medians and three rational sides in
an isosceles triangle. This is equivalent to imposing u = 2w

1−w2 in (5.3).

Ew : y2
0 = x0

(
x2

0 − 4(w2 + 1)2(w4 + 6w2 + 1)
(w2 − 1)2 x0 + 4(w2 + 1)10

(w2 − 1)6

)
.

Making the change x0 = (w2+1)2

(w2−1)4 x, y0 = (w2+1)3

(w2−1)6 y, we obtain

(5.4) Ew : y2 = x
(
x2 − 4(w4 + 6w2 + 1)(w2 − 1)2x + 4(w2 + 1)6(w2 − 1)2

)
.

Looking at the degree of the coefficients, we conclude that χ = 4. We find
two points of infinite order

P (w) =
(
(w2 + 1)4, (w2 + 1)4(w2 − 2w − 1)(w2 + 2w − 1)

)
and

T (w) =
(
2(w − 1)2(w2 + 1)3, 16w2(w − 1)2(w2 + 1)3).

One can check that P and T have infinite order by evaluating at w = 2.
This gives the curve y2 = x(x2 − 1476x + 562500) and P = (625, −4375),
T = (250, 8000). We have 2P = (75625

196 , 20301875
2744 ) and 2T = (15625

16 , −546875
64 ),
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which have non-integral coordinates, showing that P and T are points of
infinite order. Indeed, we find that the curve has rank 2 and a set of gen-
erators for the free part is given by P and T .

As in Theorem 2.1, we conclude:

Theorem 5.3. For all but finitely many values of w, there are infinitely
many isosceles triangles with rational sides, two of which correspond to w,
and two rational (symmetric) medians.

6. Area bisector

This section considers the area bisector, the geodesic segment from one
vertex, meeting the opposite side and separating the triangle into two tri-
angles of equal area. For the area bisector to be rational, we will demand
that the length be rational, and that it divides the triangle into two parts
of equal rational area.

Consider a spherical triangle with sides a, b, c having opposite angles
α, β, γ. Let m denote the area bisector at angle α, cutting α into α1 and
α − α1. Denote by θ the angle at the intersection of m and a, on the side
of α1, and (assume) on the side of β. Thus we have two triangles: one with
angles α1, β, θ and one with α − α1, γ, π − θ.

By the supplemental law of cosines (1.4) we have

sin(α1) sin(β) cos(c) = cos(θ) + cos(α1) cos(β).

Combining this with the definition of area bisector

2(α1 + θ + β − π) = A i.e. θ = π + A

2 − α1 − β,

we get

(6.1) sin(α1) sin(β) cos(c) = − cos
(

A

2 − α1 − β

)
+ cos(α1) cos(β).

Using trigonometric identities, we get

tan(α1) = cos(β) − cos(A/2) cos(β) − sin(A/2) sin(β)
cos(β) sin(A/2) − cos(A/2) sin(β) + cos(c) sin(β) .

Using the supplemental law of cosines (1.4) again:

sin(α) sin(β) cos(c) = cos(γ) + cos(α) cos(β),

we get

tan(α1)

= (cos(A/2) − 1) cos(β) sin(α) + sin(A/2) sin(α) sin(β)
cos(A/2) sin(α) sin(β) − (sin(A/2) sin(α) + cos(α)) cos(β) − cos(γ) .
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Now using cos(γ) = − cos(A − α − β), and expanding the trigonometric
identities we get
tan(α1) = −

[
(cos(A/2) − 1) cos(β) sin(α) + sin(A/2) sin(α) sin(β)

]/[
(2 cos(α) sin(A/2)2 − (2 cos(A/2) − 1) sin(A/2) sin(α)) cos(β)

− (2 cos(A/2) cos(α) sin(A/2)
+ (2 sin(A/2)2 + cos(A/2) − 1) sin(α)) sin(β)

]
.

Hence the tangent of α1 is always rational if α, β and A/2 are (i.e. sines
and cosines of these quantities). Thus, for α1 to be a rational angle, we
must ask that 1

cos(α1) ∈ Q. Therefore, we need that

w2 = 1 + tan(α1)2

for some w ∈ Q. Applying the change of variables

n = sin(A/2)
1 + cos(A/2) , u = sin(β)

1 + cos(β) , t = sin(α)
1 + cos(α) ,

and clearing a square (substituting w = s2w), we get
w2 = 4(n − u)2(nu + 1)2t4

+ 4(n − u)(nu + 1)(−2n3u + 3n2u2 − 3n2 + 6nu − u2 + 1)t3

+
[
n6u4 + 2n6u2 − 8n5u3 + 11n4u4 + n6 + 8n5u − 50n4u2 + 64n3u3

− 13n2u4 + 11n4 − 64n3u + 86n2u2 − 24nu3 + u4 − 13n2

+ 24nu − 6u2 + 1
]
t2

+ 4(−n + u)(nu + 1)(−2n3u + 3n2u2 − 3n2 + 6nu − u2 + 1)t
+ 4(−n + u)2(nu + 1)2,

that has a rational point (t, w) = (0, 2(−n + u)(nu + 1)).
We remark that this equation is the same as in [23, Section 6] after

making the change of variables u → −u, t → −t. Thus we get

(6.2) En,u : y2 = (x − (n2 + 1)2(nu2 + 2u − n)2)

×
(
x2 − (n2 + 1)

(
n4u4 − 8n2u4 − u4 + 16n3u3 − 16nu3 − 6n4u2

+ 32n2u2 − 10u2 − 16n3u + 16nu + n4 − 8n2 − 1
)
x

− (n2 + 1)2(nu2 + 2u − n)2(3n2u2 − u2 − 2n3u + 6nu − 3n2 + 1)2
)
.

We, therefore, have the following result.

Theorem 6.1. A spherical Heron triangle with rational half-area with pa-
rameter n and rational angle with parameter u has one rational area bisector
if and only if it corresponds to a rational point of En,u.
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The analogue of [23, Lemma 6.1] gives us some information about the
arithmetic structure of the K3-surface En, and in particular, that it has a
point of infinite order.

Lemma 6.2. The rank of the K3-surface En satisfies

1 ≤ rk(En(C(u))) ≤ 4.

Moreover, En has a torsion point of order 2 given by(
(n2 + 1)2(nu2 + 2u − n)2, 0

)
.

The point

Q(n, u) =
(
0, (n2 + 1)2(nu2 + 2u − n)2(3n2u2 − u2 − 2n3u + 6nu − 3n2 + 1)

)
is of infinite order.

7. Isosceles triangle with meridians and equator as sides

a

α

θ

β1

Figure 7.1. Schematic picture of the triangles under consideration.

In this section we consider a special family of spherical triangles. Namely
we consider isosceles triangles with two half-meridians and a piece of the
equator as sides. We will set that the side that is part of the equator
has length a. The other two sides have length π/2. The angles are then
α, π/2, π/2. The median/bisector/height corresponding to a is also π/2,
and is, therefore, rational.

Notice that the law of sines (1.5) gives sin(α) = sin(a) while the law of
cosines (1.3) gives cos(a) = cos(α). Thus a and α are rational simultane-
ously. Assume they are.

Our goal is to study when the other two cevians are rational. Thus con-
sider a cevian d from B to b, intersecting the side b at angle θ on the side
of the vertex A, and dividing the angle β at B into two angles β1 on the
side of the vertex A and π/2 − β1 on the side of a (see Figure 7.1).
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7.1. Median. If the other two cevians are medians of length m, then they
divide the corresponding opposite side into two geodesics of length π/4.
But the law of cosines (1.3) gives cos(m) = cos(π/4) cos(a). Since cos(π/4)
is irrational, so is m, unless cos(a) = 0. But this is only possible when
a = α = π/2, and this leads to the equilateral triangle that appears as the
sole solution of Theorem 1.3.

7.2. Height. If the other two cevians are heights of length h, then θ =
π/2, and the triangle containing the sides a and h must be isosceles since
it has two angles of π/2. Thus h = a and any triangle with a rational gives
a solution.

7.3. Bisector. If the other two cevians are bisectors of length ♭, then
β1 = π/4. By the law of sines (1.5), sin(θ)

sin(π/2) = sin(α)
sin(♭) . From this

(7.1) sin(θ) sin(♭) = sin(α).

The supplemental law of cosines (1.4) gives

cos(α) = − cos(θ) cos(π/4) + sin(θ) sin(π/4) cos(♭),
cos(π/2) = − cos(π − θ) cos(π/4) + sin(π − θ) sin(π/4) cos(♭).

Adding the above equations,

(7.2) sin(θ) cos(♭) = cos(α)
2 sin(π/4) .

Suppose that cos(α) = 0. Since 0 < α < π, we have that α = π/2. This leads
to the equilateral triangle that appears as the sole solution of Theorem 1.3.

When cos(α) ̸= 0, equation (7.2) can be combined with equation (7.1)
to obtain

tan(♭) = tan(α)2 sin(π/4).
Since tan(α) is rational, and sin(π/4) is not, we must have tan(α) = 0,

leading to α = π, a degenerate triangle.

7.4. Area bisector. If the other two cevians are area bisectors of length
v, the areas of the half-triangles are α+β1 +θ−π and π−β1 −θ. Combining
these two equations,

π = α/2 + θ + β1.

By the supplemental law of cosines (1.4),

sin(β1) sin(α) cos(π/2) = cos(θ) + cos(β1) cos(α).

Writing cos(θ) = − cos(α/2 + β1),

0 = − cos(α/2) cos(β1) + sin(α/2) sin(β1) + cos(β1) cos(α).
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This gives

(7.3) tan(β1) = cos(α/2) − cos(α)
sin(α/2) .

Since α + θ + β1 − π is half the area of the triangle, it must be rational,
and therefore, θ + β1 is rational, and since α/2 + θ + β1 = π, we conclude
that α/2 is rational.

By the law of sines (1.5) we have
sin(v)
sin(α) = sin(π/2)

sin(θ) = 1
sin(θ) .

Therefore, we need that sin(θ) be rational.
By the supplemental law of cosines (1.4),

cos(α) = − cos(θ) cos(β1) + sin(θ) sin(β1) cos(v)(7.4)
cos(π/2) = − cos(π − θ) cos(π/2 − β1) + sin(π − θ) sin(π/2 − β1) cos(v)

= cos(θ) sin(β1) + sin(θ) cos(β1) cos(v).(7.5)

Multiplying (7.4) by sin(β1), (7.5) by cos(β1), and adding, we get

cos(α) sin(β1) = sin(θ) cos(v).

From this, we see that sin(β1) must be rational. Since tan(β1) must be
rational by (7.3), then cos(β1) is also rational. Setting w := 1

cos(β1) , we then
have

(7.6) tan(β1)2 + 1 = w2

Setting

n = sin(α/2)
1 + cos(α/2)

in (7.3), combining in (7.6), and substituting w(n2 + 1) → w, we get

w2 = n6 − 5n4 + 11n2 + 1.

We will need a lemma.

Lemma 7.1. The only rational points on the genus 2 curve

C : Y 2 = X6 − 5X4 + 11X2 + 1

are (0, ±1) and the two points at infinity.

Note that the points X = 0 correspond to n = 0 and yield a degenerate
case with α = 0. Similarly, the points at infinity correspond to α = 2π+4kπ
with k ∈ Z and therefore do not contribute to solutions.

Thus, assuming the lemma, we see that there are no such triangles with
rational area bisectors.
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Proof of Lemma 7.1. We follow the method due to Flynn an Wetherell [13].
Notice that C is a bielliptic curve of genus 2. C covers two elliptic curves:

Ea : Y 2 = x3 − 5x2 + 11x + 1,

Eb : Y 2 = x3 + 11x2 − 5x + 1,

with the maps (X, Y ) → (X2, Y ) and (X, Y ) → (1/X2, Y/X3). Both
Ea(Q) = ⟨(3, 4)⟩ and Eb(Q) = ⟨(−1, 4)⟩ have rank 1, and Ea × Eb is
isogenous to the Jacobian J of C. Since the Jacobian has rank 2, the more
standard methods for finding rational points, such as Coleman’s effective
Chabauty’s theorem, cannot be applied.

Our goal is to apply Lemma 1.1(a) from [13], to the curve Ea. Let

F a(x) = x3 − 5x2 + 11x + 1.

F a(x) is an irreducible polynomial over Q. Let ω a root of F a(x).
First we do the 2-descent and find that Ea(Q)/2Ea(Q) = {O, (3, 4)}.

Then [13, Lemma 1.1(a)] asserts that if (X, Y ) ∈ C(Q), then x = X2

satisfies one of the following two equations.

Ea
1 := y2 = x(x2 + (ω − 5)x + ω2 − 5ω + 11),

Ea
2 := y2 = (3 − ω)x(x2 + (ω − 5)x + ω2 − 5ω + 11).

We remark that Ea
1 has rank 0 and torsion isomorphic to Z/4Z gener-

ated by (
ω2

4 − 3ω

2 + 13
4 ,

ω2

4 − 3ω

2 + 17
4

)
.

Thus, the only affine points from C(Q) arising from Ea
1 are (0, ±1).

We now consider Ea
2 (Q(ω)). A standard descent argument shows that

the rank is 1, with two generators: (0, 0) of order 2 and

P0 =
(

1, −ω2

2 + 3ω − 9
2

)

of infinite order. We need to check that there are no extra points with ra-
tional x-coordinate. For this, we apply the argument from Section 2 in [13],
and reduce modulo 5. (Remark that the prime 5 satisfies the technical
conditions required by [13, Eq. (2.13)].) Let us denote by ˜ the reduction
modulo 5. We see that P̃0 has order 28 in Ẽa

2 (F5(ω̃)). Therefore, any point P
of Ea

2 (Q(ω)) can be written uniquely as P = S +nQ0, for n ∈ Z, Q0 = 28P0
and S a point in the set

{kP0, kP0 + (0, 0) : k ∈ Z, −14 < k ≤ 14}.
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In the above set the only points that have rational x-coordinate when re-
duced to Ẽa

2 (F5(ω̃)) are those in

M := {O, (0, 0), ±P0, ±10P0, ±4P0 + (0, 0),
± 13P0 + (0, 0), 14P0, 14P0 + (0, 0)}.

Of those, O, (0, 0), and ±P0 have actual rational x-coordinate when viewed
in Ea

2 (Q(ω)).
Our goal is to check that if a point of the form S + nQ0 with S ∈ M has

rational x-coordinate, then necessarily n = 0. Instead of doing this, we will
work with Q1 = 14P0 and

M1 := {O, (0, 0), ±P0, ±P0 + (0, 0), ±4P0, ±4P0 + (0, 0)}

and prove that a point of the form S + nQ1 with S ∈ M1 has rational
x-coordinate necessarily satisfies n = 0.

We work modulo 55 as in [13, Example 3.1]. Eventually we want to
compute the x coordinate of nQ1 for n an arbitrary integer. To do this
efficiently, it is convenient to work on the formal group of the elliptic curve.
Thus, we compute the z-coordinate of Q1, where z = −x/y:

5(466ω2 + 483ω + 448) (mod 55).

In order to multiply by n, we will combine the logarithm and the exponen-
tial. Therefore our next step is to find the log of the z-coordinate of Q1
([13, Eq. (2.9)]):

5(616ω2 + 358ω + 98) (mod 55).

Now we substitute n log(z) into the exponential and find the z-coordinate
of nQ1 ([13, Eq. (2.10)]):

(7.7) (54 · 3n5 + 53 · 4n3 + 5 · 616n)ω2 + (54 · 3n5 + 54 · 3n3 + 5 · 358n)ω
+ (54 · 2n5 + 53 · 4n3 + 5 · 98n) (mod 55).

Finally we compute 1/x ([13, Eq. (2.6)]):

52 · 106n2ω2 + 52 · 109n2ω + (54 · 3n4 + 52 · 118n2) (mod 55).

In order to have a point of the form nQ1 with rational x-coordinate, the
coefficients of ω2 and ω must be 0 in Z5. The power series on n have Z5-
integral coefficients and start with the term n2, and therefore n = 0 is a
double zero. Strassmann’s theorem implies that there are at most two roots.
Hence, we conclude that n = 0 is the only possible solution.

One must then do the same procedure for S+nQ1 for each of the elements
S ∈ M1.
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To work with (0, 0) + nQ1, we replace the coordinates of (0, 0) and the
value of equation (7.7) in [13, Eq. (2.8)]. This gives

(54 · 3n4 + 52 · 118n2)ω2 + 52 · 54n2ω + (54 · 3n4 + 52 · 64n2) (mod 55).

for the x-coordinate of (0, 0) + nQ1. For the above to be Q-rational, we
need the coefficient of ω to be zero, but again, by Strassmann’s theorem,
the only possible solution is with n = 0.

For P0 + nQ1, we obtain, for the coefficient of ω2 in the x-coordinate,

(54 · 2n5 + 54 · n4 + 53 · 17n3 + 52 · 29n2 + 5 · 197n) (mod 55),

which, by Strassmann’s theorem, leads to a single solution at n = 0.
For P0 + (0, 0) + nQ1, we obtain, for the coefficient of ω2 in the x-

coordinate,

(54 · 3n5 + 54 · n4 + 54 · 3n3 + 52 · 43n2 + 52 · 103n + 1) (mod 55),

which clearly has no solution when viewed modulo 5.
For 4P0 + nQ1, we obtain, for the coefficient of ω2 in the x-coordinate,

(54 · 3n5 + 53 · 6n3 + 52 · 47n2 + 5 · 272n + 2579) (mod 55),

which clearly has no solution when viewed modulo 5.
Finally, for 4P0 + (0, 0) + nQ1, we obtain, for the coefficient of ω2 in the

x-coordinate,

(7.8) (54 · 2n5 + 54 · 2n3 + 52 · 3n2 + 5 · 118n + 5 · 548) (mod 55),

while the coefficient of ω is

(7.9) (54 · n5 + 54 · 2n4 + 53 · 9n3 + 52 · 87n2 + 5 · 346n + 52 · 53) (mod 55)

Looking at (7.9) modulo 52 implies that n ≡ 0 (mod 5), but in that
case (7.8) has no solution modulo 52. In sum, we have no solution in this
case.

Finally, remark that we do not have to consider the points of the form
−P0 + nQ1, −P0 + (0, 0) + nQ1, −4P0 + nQ1, and −4P0 + (0, 0) + nQ1
separately since these points can be obtained by multiplying the previous
cases by −1.

Thus, we conclude that n = 0. We examine the rational x-coordinates
of the S ∈ M1, and conclude that the only possibilities for points having
rational x-coordinates are 0, 1 coming from (0, 0) and ±P0. It is immediate
to see that X = 1 does not lead to points in C(Q), and therefore the only
possibly solution is X = 0, leading to a degenerate triangle as discussed
before. □
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8. Conclusion

There are many topics of further research based on this current work.
First, one could try considering different versions of “rationality” for trian-
gles. One natural way would be to relax the condition that all trigonometric
functions of the sides and angles/area be rational, and to call a length/angle
rational if, say, its tangent is rational (compare [14] and [23]). Another way
would be to call a spherical length rational if the length of the straight seg-
ment (inside the sphere) joining its two endpoints is rational. If a denotes
the spherical length, it is not hard to see that this corresponds to sin(a/2)
being rational.

Yet another definition of rationality would be that length / angles be
rational multiples of π. It is easy to see that the isosceles triangle with
apex on the north pole and bottom side on the equator of length p

q π (see
Figure 7.1) has all its sides, angles and area rational in this sense. It would
be interesting to know if there exist triangles having this property that do
not come from this construction.

It is also interesting to consider the necessary conditions that prevent a
spherical triangle from having multiple rational cevians (heights, medians,
area bisectors, etc.). This point of view is, to some extent, opposite to the
investigation in Section 7. For example, one can prove that if a triangle is
isosceles with the angle between the identical sides equal to π

2 , then the
medians cannot be rational simultaneously. It is natural then to wonder
which of these assumptions can be lifted.

As the referee remarked, quadratic Chabauty is applicable to the curve
considered in Lemma 7.1. (See the methods and examples in [1, 3].) This
direction could certainly be considered for Subsection 7.4 and similar prob-
lems in the future.

Finally, another possible direction for further research is the construc-
tion of high rank elliptic curves as in [10, 20]. More specifically, the au-
thors of [20] used Heron’s formula to derive elliptic curves with high ranks.
As there is an analog of Heron’s formula in the spherical world, namely
L’Huilier’s formula, it would be interesting to try to construct elliptic curves
with high ranks by adapting the method of [20].
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