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Classical forms of weight one in ordinary families

par Eric STUBLEY

Résumé. Nous développons une nouvelle stratégie pour étudier les spécia-
lisations en petits poids des familles p-adiques de formes modulaires ordi-
naires. Dans le cas elliptique, nous donnons une nouvelle preuve d’un résultat
de Ghate–Vatsal qui énonce qu’une famille de Hida contient une infinité de
formes propres classiques de poids un si et seulement si elle est à multiplication
complexe. Notre stratégie est conçue afin d’éviter explicitement l’utilisation
de certains faits connexes, à savoir que la représentation galoisienne attachée
à une forme propre classique de poids un est d’image finie et que les formes
propres classiques de poids un satisfont la conjecture de Ramanujan. Nous in-
diquons comment utiliser cette stratégie pour démontrer des énoncés similaires
dans le cas de formes modulaires Hilbert de poids partiel un, en supposant
un développement approprié de la théorie de Hida dans ce contexte.

Abstract. We develop a new strategy for studying low weight specializations
of p-adic families of ordinary modular forms. In the elliptic case, we give
a new proof of a result of Ghate–Vatsal which states that a Hida family
contains infinitely many classical eigenforms of weight one if and only if it has
complex multiplication. Our strategy is designed to explicitly avoid use of the
related facts that the Galois representation attached to a classical weight one
eigenform has finite image, and that classical weight one eigenforms satisfy
the Ramanujan conjecture. We indicate how this strategy might be used to
prove similar statements in the case of partial weight one Hilbert modular
forms, given a suitable development of Hida theory in that setting.

1. Introduction

The goal of this article is to provide a new proof of a theorem of Ghate
and Vatsal, which states that a p-adic family of p-ordinary modular forms
contains infinitely many classical forms of weight one if and only if the
family has complex multiplication. Our reason for seeking out a new proof
of this result is to avoid the use of the related facts that classical eigenforms
of weight one satisfy the Ramanujan conjecture and their associated Galois
representations have finite image. We wish to avoid using these facts so as
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to provide a proof strategy which is likely to generalize to the case of partial
weight one Hilbert modular forms, where the Ramanujan conjecture is as
yet unknown.

Let us formulate this result precisely. We fix an odd prime number p,
and let Λ = ZpJ1 + pZpK denote the Iwasawa algebra, which we think of
as parametrizing continuous p-adic characters of the multiplicative group
1 + pZp.

We say that a classical modular eigenform is said to be p-ordinary if
its Up-eigenvalue is a p-adic unit. We will be interested in p-adic fami-
lies of p-ordinary modular eigenforms. Pick a natural number N coprime
to p, which will serve as the prime-to-p level of the modular forms we
study. Hida’s theory of p-ordinary families produces a finite free Λ-module
Hord(N ; Zp) containing elements Tℓ for every prime ℓ ∤ Np and Uℓ for each
prime ℓ|Np, which is universal in the following sense. For any normalized
modular eigenform f which is of weight k ≥ 2, level of the form Npr for
some r ≥ 0, and which is p-ordinary, there is a unique homomorphism

Hord(N ; Zp) −→ Qp

determined by sending the elements Tℓ (or Uℓ if ℓ|Np) to the ℓ-th Hecke
eigenvalue of f . For such f , we say that Hord(N ; Zp) specializes to f .

The ordinary Hecke algebra Hord(N ; Zp) is constructed as a Hecke alge-
bra acting on a large space of p-adic modular forms. It is known that any
eigensystem Hord(N ; Zp) → Qp which is in arithmetic weight k ≥ 2 (mean-
ing the composite map Λ → Hord(N ; Zp) → Qp is a finite order character
times the (k − 1)-st power of the cyclotomic character) is the eigensystem
of a classical, rather than just a p-adic, modular form. However this is no
longer true for eigensystems in weight one (where the corresponding map
Λ → Qp is a finite order character): such an eigensystem may or may not
be that of a classical modular form.

The following theorem of Ghate and Vatsal characterizes exactly when
a component of Hord(N ; Zp) admits infinitely many classical weight one
specializations.

Theorem 1.1 (Ghate–Vatsal, cf. [12, Proposition 14]). Let I be a reduced
irreducible component of the ordinary Λ-adic Hecke algebra Hord(N ; Zp).
Then I specializes to infinitely many classical eigenforms of weight one if
and only if I has complex multiplication.

In this article we give a new proof of this result. The method of Ghate–
Vatsal relies crucially on the fact that the Galois representations associated
to classical eigenforms of weight one have finite image. As we are interested
in generalizing this result to the situation of Hilbert modular forms of par-
tial weight one, where the associated Galois representations have infinite
image and the Ramanujan conjecture is still open, our new proof of this
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result in the elliptic case avoids both of these known facts for classical eigen-
forms of weight one. We believe that an analogous result to Theorem 1.1
holds for certain “partially ordinary” families of Hilbert modular forms,
which we lay out as Conjecture 7.1 in Section 7.

1.1. Overview of the strategy. Our strategy is to utilize a result of
Hida from [15] which characterizes whether or not a p-ordinary family has
complex multiplication (hereafter abbreviated as “CM”) by the arithmetic
complexity of the Hecke fields of the classical forms it interpolates. A version
of this result is restated in this article as Theorem 6.1 and its proof is
sketched in Section 6.

In order to apply this characterization of CM families, we rely on a crucial
fact: Hecke fields of p-ordinary classical weight one eigenforms cannot be
too complicated. This is shown in Lemma 3.5 where we prove that for a
p-ordinary classical weight one eigenform f ∈ S1(N, ϵ; Qp(ϵ)) we have that

[Q(f) : Q(ϵ)] ≤ rankΛ(Hord(N ; Zp)) < ∞.

This is a consequence of the fact that any classical weight one eigenform
either has Up eigenvalue equal to 0 or is p-ordinary.

If we were willing to apply Hida’s characterization of CM families directly
in weight one this bound on Hecke fields would suffice to prove that a
p-ordinary family with infinitely many classical weight one specializations
has CM. However, Hida’s characterization crucially uses that the Frobenius
eigenvalues in the Galois representations attached to elliptic modular forms
are Weil numbers, which is a consequence of the Ramanujan conjecture.
Since we seek a proof which avoids using the Ramanujan conjecture in
weight one, we cannot directly apply Hida’s characterization in weight one.

Instead, we propagate information about the boundedness of Hecke fields
along the family from weight one into higher weights, where we do allow
ourselves to make use of the Ramanujan conjecture and hence apply Hida’s
characterization. The main idea is to analyze the structure of the “alge-
braic power series” (elements of finite extensions of Λ) which define Frobe-
nius eigenvalues across the family. The prototypical example of the type
of rigidity result we employ is the following, which is also used by Hida in
establishing the characterization of CM families: a power series F (T ) ∈ Λ
for which F (ζ − 1) is a power of ζ for infinitely many ζ ∈ µp∞ must be
of the form ζ ′(1 + T )e = ζ ′∑∞

n=0
(n
e

)
Tn, where ζ ′ ∈ µp∞ and e ∈ Zp. Our

situation requires controlling algebraic power series with many specializa-
tions which are a sum of a bounded number of roots of unity rather than
just a single root of unity, to account for the fact that Hecke fields of our
p-ordinary weight one forms are uniformly bounded over Q(µp∞), but may
not necessarily be cyclotomic themselves. Once these algebraic power series
have been controlled using the boundedness of Hecke fields in weight one,
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we use our exact knowledge of the shape of these power series to establish
bounds on Hecke fields in higher weight, from whence we may apply Hida’s
characterization.

1.2. Outline. In Section 2 we recall the key facts about modular forms
which are used in our arguments. We discuss Galois conjugation of modular
forms and its relation to Hecke fields. Our arguments rely on two types of
bounds on the Hecke eigenvalues of modular forms: Archimedean bounds
(as embodied by bounds coming from the holomorphicity of the L-series
of f) and non-Archimedean bounds (as embodied by the slope bounds
0 ≤ ordp(ap(f)) ≤ k − 1 for classical forms of weight k).

Section 3 covers the statements we need from the theory of ordinary
families of p-adic modular forms. We cover what we need in the elliptic
case, paying particular attention to the inclusion of forms of weight one
into ordinary families, as the literature often works only with forms of
weight k ≥ 2.

Section 4 is where new results start appearing. This chapter focuses on
rigidity principles for p-adic power series and integral extensions of power
series rings. After recalling in Subsection 4.1 some facts about Weierstrass
preparation and Newton polygons to set the stage for how we approach
thinking about elements of integral extension of power series rings, we prove
our main rigidity result in Subsection 4.2. We conclude this chapter with
tools for studying the fields of definition of the values of algebraic power
series of the form determined by our rigidity results.

Section 5 works throughout with a component I of the ordinary Λ-
adic Hecke algebra, which is assumed to admit infinitely many classical
weight one specializations. This chapter covers the construction of a high-
dimensional Galois representation whose characteristic polynomials of
Frobenius provide a way to propagate information about Hecke fields from
low weight into regular weight. Subsection 5.1 carries out the actual con-
struction, which is a careful selection of components of the Hecke algebra
by an extended pigeonhole principle argument; the Galois representation
we want is the direct sum of the representations attached to a well-chosen
set of such components. In Subsection 5.2 we show that the characteris-
tic polynomials of Frobenius of our high-dimensional Galois representation
satisfy the conditions necessary to apply the rigidity principles of Section 4.

Section 6 sketches a proof of Hida’s characterization of CM families in
Subsection 6.1 and then assembles the ingredients from Section 5 in order to
apply Hida’s theorem to families containing infinitely many classical forms
of low weight, proving our main theorem.

We end in Section 7 with a brief section discussing how the strategy in
this article might be applied to p-adic families containing Hilbert modular
forms of partial weight one.
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1.3. Notation. Throughout the article we work with a fixed odd prime
p. We fix an algebraic closure Qp of Qp, and completion Cp of Qp. We fix
the p-adic valuation ordp on Cp, normalized so that ordp(p) = 1.

For any field F we let GF denote the absolute Galois group of F ,
Gal(F/F ). We will only deal with absolute Galois groups of finite exten-
sions of Q and Qℓ for primes ℓ.

Acknowledgements. This article contains the results of the author’s Uni-
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2. Modular forms

In this section we collect some facts about elliptic modular eigenforms,
their Hecke fields, and bounds on their Hecke eigenvalues. Everything in
this section is either already known or easily deduced from known results,
we are simply collecting the key facts for our arguments to have them in
one place.
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2.1. Galois conjugates. Acting on the space Sk(N, ϵ; C) of cuspidal mod-
ular forms of weight k, level Γ0(N), Nebentypus character ϵ, with complex
coefficients is a commutative algebra Hk(N, ϵ; C), called the Hecke algebra.
The generators of this algebra and their action on q-expansions are:

• for each prime ℓ ∤ N a Hecke operator Tℓ acting by

Tℓ

( ∞∑
n=1

anq
n

)
=

∞∑
n=1

anℓq
n + ϵ(ℓ)ℓk−1

∞∑
n=1

anq
nℓ,

• for each prime ℓ|N an Atkin-Lehner operator Uℓ acting by

Uℓ

( ∞∑
n=1

anq
n

)
=

∞∑
n=1

anℓq
n.

Throughout this article we will mostly work with Hecke algebras rather
than directly with spaces of forms. Fundamentally the two are equivalent
thanks to the following proposition.

Proposition 2.1. The pairing

Hk(N, ϵ; C) × Sk(N, ϵ; C) → C
(T , f) 7→ a1(T (f))

is a perfect pairing of complex vector spaces.

Thanks to this perfect pairing, we have that Sk(N, ϵ; C) admits a basis
of (simultaneous) eigenvectors for the action of Hk(N, ϵ; C). If f is such an
eigenvector, we have that there is a homomorphism ψ(f) : Hk(N, ϵ; C) → C
sending Tℓ (resp. Sℓ or Uℓ) to its eigenvalue on f . If we scale the eigenvector
f so that a1(f) = 1, we call f a normalized eigenform, and we have that
Tℓ(f) = aℓ(f), the ℓ-th Fourier coefficient of f .

Moreover we can consider the Q(ϵ) or Z[ϵ]-algebra generated by these
same operators as a Hecke algebra Hk(N, ϵ; Q(ϵ)) or Hk(N, ϵ; Z[ϵ]). Since
the integral Hecke algebra is finitely generated over Z[ϵ] (it is a sub-algebra
of the finitely generated EndZ(Sk(N, ϵ; Z[ϵ]))) each such homomorphism
ψ(f) must have image in the ring of integers of a finite extension of Q.
With this structure in place we can define Galois conjugation on these
spaces of modular forms. Given a normalized eigenform f ∈ Sk(N, ϵ; C)
and an element σ of the absolute Galois group GQ we define the Galois
conjugate fσ by letting ψf : Hk(N, ϵ; Z[ϵ]) → C be the homomorphism
corresponding to f by the duality between Hecke algebras and modular
forms, and letting fσ be the normalized eigenform corresponding to σ◦ψf :
Hk(N, ϵσ; Z[ϵσ]) → C. Note that this is well-defined as we can either choose
an extension of σ to all of C or observe that the image of ψf lands in a
number field.
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Remark 2.2. We could define the Galois action on modular forms directly
on q-expansions by acting with any field automorphism of C/Q, but with
that definition it is entirely unclear why the Galois conjugate of a modular
form should still be a modular form! The given definition makes it clear
that Galois conjugate of a Hecke eigenform is still an eigenform.

See Section 6.5 of [10] for a more in depth discussion of Galois conjugates
of eigenforms.

2.2. Hecke fields.

Definition 2.3. Given a normalized eigenform f ∈ Sk(N, ϵ; C) we define
its character field

Q(ϵ) = Q({ϵ(x) : x ∈ (Z/NZ)×})

and its Hecke field

Q(f) = Q({an(f) : n ∈ N}).

Remark 2.4. We make several remarks about character and Hecke fields
of modular forms. First off, the relation between Fourier coefficients

aℓ2(f) = aℓ(f)2 − ϵ(ℓ)ℓk−1aℓ(f)

for almost all primes ℓ shows that Q(f) ⊇ Q(ϵ).
Second, since we know that the Fourier coefficient aℓ(f) is equal to the

eigenvalue of the operator Tℓ acting on f (similarly ϵ(ℓ) is the eigenvalue
of Sℓ acting on f) we have that Q(f) is the image of the homomorphism
Hk(N, ϵ; Q(ϵ)) → C sending Tℓ to aℓ(f). Since the Hecke algebra is finitely
integrally generated we have that Q(f) is a finitely generated extension of
Q. Moreover the finiteness of the Hecke algebra shows that each aℓ(f) must
be algebraic (integral even) and so we conclude that Q(f) is of finite degree
over Q.

We record here the important principle that the degree of the Hecke field
tells us the number of Galois conjugates of a form.

Lemma 2.5. Let f ∈ Sk(N, ϵ; C) be a normalized eigenform. Then the
number of Galois conjugates of f over Q is equal to the degree [Q(f) : Q]
of the Hecke field of f over Q.

Proof. This is more generally just a fact about algebraic field extensions.
The degree [Q(f) : Q] is equal to the size of the orbit of the generating set
{an(f) : n ∈ N} under the action of the absolute Galois group of Q. But
we also have that the size of this orbit is the number of Galois conjugates
of f itself, since for σ, τ ∈ GQ we have that σ(an(f)) = τ(an(f)) for all n
if and only if fσ = f τ . □
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2.3. Modular forms with complex multiplication.

Definition 2.6. Let E be an imaginary quadratic field. We say that a
modular form f has complex multiplication (or CM for short) by E if
ap(f) = 0 whenever p is inert in the extension E/Q. We say that a modular
form has CM if it has CM by some imaginary quadratic field.

A reference for basic facts about modular forms with complex multiplica-
tion is Sections 3 and 4 of [29]. Of interest to us is the fact that eigenforms
with CM can be constructed using algebraic Hecke characters, which we re-
call here. Let E be an imaginary quadratic field with a chosen embedding
σ : E → C, and let ψ be an algebraic Hecke character of infinity-type σk−1

and conductor m. Given such a Hecke character one can construct a weight
k eigenform given by the series

g =
∑
a

ψ(a)qNormE
Q(a)

where the sum is over all integral ideals a of OE which have (a,m) = 1.
The modular form g is called the θ-series attached to ψ. The eigenform g
thus constructed has level DM where D is the discriminant of E/Q and
M = NormE

Q(m), and character ϵ = χη where χ is the quadratic Dirichlet
character attached to E and η is the “finite order” part of ψ on the integers,
given by η(n) = ψ((n))/σ(n)k−1 for n ∈ Z. Note that it is immediate from
this definition that g has CM by E; if p is inert in E/Q then there are
no ideals of OE having norm p, so ap(g) =

∑
a,NormE

Q(a)=p ψ(a) = 0. This
construction is studied in Section 3 of [29], and Section 4 of [29] deals with
basic facts about Galois representations attached to CM eigenforms.

Of fundamental importance for our method is the characterization of
CM families by the arithmetic complexity of their Hecke fields. This char-
acterization due to Hida is recalled in Section 6. The key philosophy is that
Hecke fields attached to CM eigenforms are much simpler than those at-
tached to non-CM eigenforms. We begin this study here with a description
of the Hecke field of a CM eigenform.

Lemma 2.7. Suppose that f ∈ Sk(N, ϵ; C) be a normalized eigenform with
CM by the imaginary quadratic field E. Suppose that f is realized as a
theta series by an algebraic Hecke character ψ of conductor m, and let
M = NormE

Q(m). Let h be the class number of E. Then there are elements
a1, . . . , ah in E such that

Q(f) ⊆ E(µh·M , a
1/h
1 , . . . , a

1/h
h ).

In particular, the degree of the Hecke field over Q is bounded solely in terms
of the CM field E and the conductor m of the character ψ.
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Proof. We know that our eigenform f has q-expansion given by

f =
∑
a

ψ(a)qNormE
Q(a)

where the sum is over all integral ideals a of OE which have (a,m) = 1.
We certainly have that Q(f) = Q({ψ(a)}), so it suffices to understand the
field of definition of ψ.

If (a) is a principal ideal with generator a ≡ 1 mod m, we have that
ψ((a)) = ak−1. If the generator a is not necessarily ≡ 1 mod m, then we
know that ahM ≡ 1 mod m and hence ψ((a))

ak−1 ∈ µhM .
Let a1, . . . , ah be a complete set of representatives of the ideal class group

of E. For each i we have that ψ(ahi ) ∈ E since ahi is principal and ψ
necessarily sends principal ideals to elements of E (using that the infinity-
type of ψ is σk−1 for σ : E → C). Let ai be an element of E such that
ψ(ahi ) = ai. We know that every ideal a is equal to a principal ideal times
one of our representatives ai, hence we have that ψ(a) must be a root of
unity of order hM times a1/h

i . □

The preceding lemma is the first instance of the phenomenon that Hecke
fields of CM forms are “uniform”, here seen in the uniform bound on degrees
of Hecke fields with a given CM field and conductor. This idea will be
developed further in Subsection 3.4, where we show that there is a uniform
description of the Hecke fields themselves on all forms in an ordinary family
which has CM, not just a uniform bound on the degrees of the Hecke fields.

2.4. Archimedean bounds. In this section we state bounds on the
(Archimedean) absolute value of Hecke eigenvalues of modular forms.

Theorem 2.8 (The Ramanujan conjecture, due to Deligne [8]). Let f ∈
Sk(N, ϵ; C) be a normalized eigenform. Then for all primes ℓ we have that

|aℓ(f)|C ≤ 2ℓ
k−1

2 .

Remark 2.9. Let ρf,p be the p-adic Galois representation attached to f .
Let αℓ, βℓ be the eigenvalues of ρf,p(Frobℓ); these are the roots of x2 −
aℓ(f)x + ϵ(ℓ)ℓk−1. The bound of Theorem 2.8 then gives that αℓ, βℓ are
ℓ-Weil numbers, in other words their complex absolute values are exactly
ℓ

k−1
2 . This fact is key to the characterization of CM ordinary families due

to Hida that we employ in Section 6.

Theorem 2.8 also holds in weight one, where it is due to Deligne–Serre
in [9]. However, we wish to avoid using it in low weight in order to provide a
proof technique which has the possibility of applying to the case of Hilbert
modular forms of partial weight one. To get around this we will only use
a weaker bound in the case k = 1, the analog of which is comparatively
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easy to establish for all forms. Though this weaker bound can doubtless
be extracted from the literature, we provide a proof here. We note that all
our method requires is an upper bound on |aℓ(f)|C which is independent
of f (but may depend on the weight k), so the exact exponent k

2 + 1 that
appears in our bound is unimportant.

Theorem 2.10. Let f ∈ Sk(N, ϵ; C) be a normalized eigenform. Then for
all primes ℓ ∤ N we have that

|aℓ(f)|C ≤ 2ℓ
k
2 +1.

Proof. The proof is a combination of two facts. First, for any cusp form
f(q) =

∑∞
n=1 anq

n of weight k we know that there is some constant C such
that |an|C ≤ Cn

k
2 and so the L-series

L(s, f) =
∞∑
n=1

an
ns

associated to f converges absolutely in the right half-plane Re(s) > k
2 + 1.

This bound on coefficients does not suffice for our purposes, as the constant
C may depend on the form f . The second fact that we need is that since f
is a normalized eigenform its L-series admits an Euler product expansion,

L(s, f) =
∏
p

1
1 − app−s + ϵ(p)pk−1p−2s .

Both of these facts can be found in Section 5.9 of [10].
Consider the series Lp(s, f) =

∑∞
r=0

apr

p−rs . On one hand we know that this
series converges absolutely on the right half-plane Re(s) > k

2 + 1, since it
is just a sum over fewer terms of the series L(s, f). We also know that this
is equal to the geometric series 1

1−app−s+ϵ(p)pk−1p−2s after some rearranging
of terms, and a geometric series 1

1−x converges exactly when |x| < 1. So we
get that

|app−s − ϵ(p)pk−1p−2s|C < 1
whenever Re(s) > k

2 + 1. Taking a limit as Re(s) → k
2 + 1 and juggling the

inequality around yields the desired bound

|ap|C ≤ 2p
k
2 +1.

□

2.5. Non-Archimedean bounds. In this section we discuss non-Archi-
medean bounds on the Hecke eigenvalues of modular forms. The main result
is a classical bound on the Up eigenvalue of classical forms: if f has weight
k and its Up eigenvalue is non-zero, then that eigenvalue has valuation
bounded between 0 and k−1. This valuation is often referred to as the slope
of f . This bound appears throughout the literature, and some cases can
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be easily proved using the Galois representations attached to eigenforms,
but we provide a proof using the automorphic representations attached to
eigenforms that covers all cases of interest. Following that we derive a key
consequence for weight one forms.

Theorem 2.11. Let f ∈ Sk(N, ϵ; Cp) be a normalized eigenform. Suppose
that p divides N , so we have that the Up eigenvalue of f is ap(f). If ap(f) ̸=
0 then

0 ≤ ordp(ap(f)) ≤ k − 1.

Proof. We know from the integrality of the Hecke algebra that ap(f) will
be integral, i.e. ordp(ap(f)) ≥ 0. Let πf be the automorphic representation
attached to f . We choose to normalize πf so that the Up eigenvalue of
the modular form f is √

p times the Up eigenvalue of πf,p. Thus we wish
to show that the Up eigenvalue of πf,p has valuation bounded above by
k − 3

2 . Under the assumption that the Up eigenvalue is non-zero, there are
three possible cases for what πf,p can be: an irreducible principal series
representation with both characters unramified, an irreducible principal
series representation with one character unramified, or an unramified twist
of the Steinberg representation. We treat each case separately to establish
the upper bound.

Case 1. πf,p is an irreducible principal series representation PS(χ1, χ2)
where both characters χi are unramified. In this case we know that the
Up eigenvalue is either χ1(p) or χ2(p). Since the central character of πf has
weight k − 2, we know that the product χ1(p)χ2(p) has valuation k − 2.
Since we know that ordp(χi(p)) ≥ −1

2 , we get that each must have valua-
tion at most k−2+ 1

2 = k− 3
2 . Thus the Up eigenvalue of πf,p has valuation

at most k − 3
2 .

Case 2. πf,p is an irreducible principal series representation PS(χ1, χ2)
where only χ1 is unramified. Let α1 = χ1(p), which is the Up eigenvalue of
πf,p, hence it has valuation at least −1

2 . Let χ be the character of
∏
ℓ Z×

ℓ
which is equal to χ2 on the p-component and trivial on all others; we can
view this as a finite order Dirichlet character. Take g to be the eigenform
f ⊗ χ−1. Thus we have that πg,p = πf,p ⊗ χ−1|Z×

p
, which is the principal

series representation PS(χ1χ
−1, χ2χ

−1). Note that our choice of χ means
that χ1χ

−1 is ramified and χ2χ
−1 is unramified. Let α2 = χ2(p), which is

the Up eigenvalue of g, hence it has valuation at least −1
2 . Since we’ve only

twisted f by a finite order character that weight of the central character
remains unchanged. From this we conclude that ordp(α1α2) ≤ k − 2, and
since each has valuation at least −1

2 we conclude that each has valuation
at most k − 3

2 .
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Case 3. πf,p is an unramified twist of the Steinberg representation S(χ).
In this case the Up eigenvalue of πf,p is χ(p). We know that the central
character evaluated at p is equal to pχ(p)2. Since this must have valuation
equal to k−2, we see that χ(p) has valuation equal to k−3

2 which is certainly
less than k− 3

2 . Note in particular that this cannot occur when k = 1 since
k−3

2 = −1 is less than −1
2 , which we already know to be a lower bound on

the valuation.

Thus in all cases we have the desired bounds on the Up eigenvalue of
πf,p, which gives us the desired bounds on the Up eigenvalue of f itself. □

Using this bound on the valuation of the Up eigenvalue of an eigenform,
we prove the “automatically ordinary” property for weight one eigenforms
alluded to in Subsection 1.1. This is simply a matter of applying the bound
from Theorem 2.11 in the case k = 1.

Corollary 2.12. Let f ∈ S1(N, ϵ; Cp) be a normalized eigenform of weight
one. If ap(f) ̸= 0 then

ordp(ap(fσ)) = 0
for all σ ∈ GQ.

Proof. A Galois conjugate fσ of f will be a normalized eigenform in the
space S1(N, ϵσ; Cp). In particular Theorem 2.11 still applies to fσ, since
ap(fσ) = σ(ap(f)) ̸= 0. So we conclude that

0 ≤ ordp(ap(fσ)) ≤ 1 − 1 = 0. □

3. Families of modular forms

3.1. Ordinary families of elliptic modular forms. In this section we
summarize the elements of Hida’s theory of ordinary families of elliptic
modular forms which we will use in later sections. The main idea is that
for any space of forms with level divisible by p we have an action of the
Up operator. Hida’s key realization was that the Up-ordinary subspace of a
space of modular forms has bounded dimension as we vary the weight and
Nebentypus character. As a consequence of this the Up-ordinary subspaces
of forms in a fixed tame level can be interpolated into a single family,
finite over a weight space Λ parametrizing the weight-character (viewed as
a p-adic character of Z×

p ). Whenever we discuss ordinarity (of a space of
modular forms, or Hecke algebra, etc.) from now we always mean ordinarity
with respect to the Up operator, so we will say “ordinary” rather than “Up-
ordinary”. For elliptic forms all the statements we need can be found in
Hida’s original papers [13] and [14] together with Wiles’ work on Galois
representations attached to ordinary eigenforms [33].
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We work with Λ-adic Hecke algebras as our main objects. We fix the
following notation for use in this section.

• An odd prime number p.
• A positive integer N coprime to p, which will be the prime-to-p part

of the level of our forms.
• K a finite extension of Qp, with ring of integers OK .
• Λ = OKJT K, the ring of formal power series in one variable over

OK .
• For any positive integer k and p-power root of unity ζ, let Pk,ζ be

the kernel of the homomorphism
Λ −→ Qp

T 7−→ ζ(1 + p)k−1 − 1.
We view Λ as the OK group ring of the torsion-free part of the Galois

group
Gal(Q(µp∞)/Q) ∼= Z×

p .

The torsion-free part is (1 + p)Zp ; the isomorphism with OKJT K is realized
by sending 1 + p to T . While we could view all of our Hecke algebras as
living over the larger group ring OKJZ×

p K, the (Z/pZ)× part of the character
plays no role in our arguments so we will work solely with Hecke algebras
as Λ-modules. Given the above setup, Hida’s theory asserts the existence
of a “universal” ordinary Hecke algebra.

Theorem 3.1. There exists a Hecke algebra Hord(N ; OK) with the follow-
ing properties.

(1) Hord(N ; OK) is a finitely generated free Λ-module.
(2) (Base Change) If L is a finite extension of K, with ring of integers

OL, we have that
Hord(N ; OL) ∼= Hord(N ; OK) ⊗OK

OL.

(3) Hord(N ; OK) is generated as a Λ-module by a collection of elements
Tℓ, Sℓ for each prime ℓ ∤ Np, and elements Uℓ for each prime ℓ|Np.

(4) (Control Theorem) Let k ≥ 2 be an integer, and ζ a pr-th root of
unity for some r ≥ 0. Suppose that K is large enough to contain ζ.
Let ϵ : (1 + p)Zp → O×

K be the character taking 1 + p to ζ. Then the
natural map

Hord(N ; OK)/Pk,ζHord(N ; OK)
∼=−→ Hord

k (Γ1(Np) ∩ Γ0(pr), ϵ; OK)
sending the abstract elements Tℓ, Sℓ, Uℓ on the left to the equiva-
lently named Hecke operators on the right is an isomorphism of
Λ-modules. In other words Hord(N ; OK) interpolates the ordinary
subspaces of all spaces of forms with prime to p level Γ1(N) and
weight k ≥ 2.
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Proof. The fact that Hord(N ; OK) is finite free over Λ is Theorem 3.1 of [14].
The control theorem is Theorem 1.2 of [13]. The other statements are all
consequences of the definition of Hord(N ; OK), and can be found in [14]. □

There are two constructions of this universal ordinary Hecke algebra
Hord(N ; OK). The first, using Katz’s theory of geometric p-adic modular
forms, appears in [14]. The second, based on Betti cohomology of modular
curves and group cohomology of congruence subgroups of SL2(Z), appears
in [13]. We refer to these approaches as the geometric and cohomological ap-
proaches to Hida theory. Each approach has benefits and drawbacks, and
both are necessary in order to develop all facets of the theory which we
use in this work. The geometric approach is crucial to understanding how
forms of weight one fit into Hord(N ; OK), a topic which we explore in Sub-
section 3.3. If one wants freeness over Λ of Hord(N ; OK) rather than just
torsion-freeness this is provided only by the geometric approach. A down-
side of the geometric approach is that, at least in Hida’s original work,
it only deals with the case r = 0 of the control theorem, i.e. forms with
trivial Nebentypus character. While this is sufficient to uniquely determine
Hord(N ; OK) it is not enough for our application, as we will need to spe-
cialize at infinitely many different Nebentypus characters in a single weight.
The cohomological approach is comparatively simpler as it does not require
the algebraic geometry machinery of the geometric approach. Proving the
control theorem for all characters ϵ is much more straightforward under
the cohomological framework than the geometric one. The downsides of
the cohomological approach are that it only produces torsion-freeness of
Hord(N ; OK) over Λ (as opposed to freeness) and that it gives no informa-
tion about the weight one specializations of the Hecke algebra.

Since we are interested in maps from Hord(N ; OK) to rings of integers,
we will focus our attention on the quotients I = Hord(N ; OK)/P by min-
imal primes P of Hord(N ; OK). We refer to these rings I as components
of Hord(N ; OK). Since Hord(N ; OK) is noetherian we have that there are
finitely many minimal primes P1, . . . ,Pn and thus we have an injection

Hord(N ; OK)red ↪−→
n∏
i=1

Ii

where Ii = Hord(N ; OK)/Pi.
Given a normalized eigenform f ∈ Sord

k (Γ1(Np) ∩ Γ0(pr), ϵ; OL) for some
weight k ≥ 2, character ϵ of conductor pr, and finite extension L of K,
we say that f arises from Hord(N ; OK) or f arises as a specialization
of Hord(N ; OK). If f arises from Hord(N ; OK) and I is a component of
Hord(N ; OK), we say that f arises from I if the homomorphism
Hord(N ; OK) → OK realizing the eigensystem of f factors through the
surjective map Hord(N ; OK) → I.
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With this notion of forms arising from components, we can state an
important uniqueness property of the Λ-adic Hecke algebra.

Theorem 3.2. Let f ∈ Sord
k (Γ1(Np)∩Γ0(pr), ϵ; OK) be a normalized eigen-

form of weight k ≥ 2. Then there is a unique component I of the Λ-adic
Hecke algebra Hord(N ; OK) such that f arises from I.

Proof. This is Corollary 1.5 of [13]. □

3.2. Galois representations attached to ordinary families. Each of
the normalized eigenforms which Hord(N ; OK) interpolates has an attached
2-dimensional p-adic Galois representation. It should thus not be surpris-
ing that these Galois representations also interpolate into a single Λ-adic
Galois representation. These Λ-adic representations were first studied by
Hida in [13] and Wiles in [33]. We record here the minimal properties of
these representations that we use in later sections.

Theorem 3.3. Suppose that I is a reduced, irreducible component of
Hord(N ; OK). Then there exists a continuous 2-dimensional Galois rep-
resentation

ρI : GQ −→ GL2(Frac(I))

which has the following properties.
(1) ρI is absolutely irreducible.
(2) ρI is unramified away from Np, and the characteristic polynomial

of a Frobenius element at a prime ℓ ∤ Np

X2 − TℓX − ℓSℓ.

(3) When restricted to a decomposition group at p, ρI is of the form

ρI|GQp
∼=
[
∗ ∗
0 λ

]
where λ : GQp → I× is the unramified character sending Frobp
to Up.

(4) For almost all primes P of I, the representation ρI can be taken
to have values in the localization IP . In particular for almost all
normalized eigenforms f arising from I we have that the p-adic
Galois representation ρf,p attached to f is equal to the composition
of ρI : GQ → GL2(IP ) combined with the quotient map GL2(IP ) →
GL2(IP /P IP ) for some prime P of I.

Proof. This is Theorem 2.1 of [13]. □
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3.3. Weight one forms in ordinary families. While Hida’s articles are
very precise about the specialization of ordinary families in weights k ≥ 2,
eigenforms of weight one are not discussed directly in these articles. It does
follow from Hida’s first construction of ordinary families, using geometric
p-adic modular forms, that every classical p-ordinary weight one eigenform
arises as the specialization of an ordinary family. As this is not obviously
stated in the literature, we discuss this explicitly here, along with a key
consequence for the Hecke fields of p-ordinary weight one eigenforms.

Proposition 3.4. Given a character ϵ : (1 + p)Zp → µpr sending 1 + p to
a generator ζ of µpr , there is a natural surjective homomorphism

Hord(N ; OK)/P1,ζHord(N ; OK) −↠ Hord
1 (Γ1(Np) ∩ Γ0(pr), ϵ; OK).

sending the abstract elements Tℓ, Sℓ, Uℓ on the left to the equivalently named
Hecke operators on the right. Put differently, every p-ordinary weight one
eigenform arises as the specialization of an ordinary family.

Proof. In Hida’s first article [14], the universal ordinary Hecke algebra
Hord(N ; OK) is constructed as a limit of Hecke algebras acting on the
spaces Sord

k (Γ1(N);K/OK). These spaces of forms (or a suitable direct sum
of these spaces allowing for divided congruences) are dense in the space S of
all ordinary geometric p-adic modular forms, and so Hord(N ; OK) can also
be viewed as the Hecke algebra acting on this single large space of p-adic
modular forms. Any space of forms Sord

k (Γ1(Npr); OK) can be viewed as a
subspace of S by interpreting these classical forms of higher level as p-adic
modular forms; in particular this holds for k = 1. At the level of Hecke alge-
bras, this means that we can realize the Hecke algebra of Sord

k (Γ1(Npr); OK)
as a quotient of the Hecke algebra on S. Decomposing the Hecke algebra on
Sord
k (Γ1(Npr); OK) as a direct sum corresponding to the various possible

Nebentypus characters, we get the desired result. □

Lemma 3.5. Suppose that f ∈ S1(Γ1(Np) ∩ Γ0(pr), ϵ; OK) is a classical
eigenform of weight one arising as a specialization of Hord(N ; OK). Recall
the finite extensions of Q defined using the Hecke eigenvalues of f :

Q(ϵ) = the character field of f
Q(f) = the Hecke field of f.

Then we have that
[Q(f) : Q(ϵ)] ≤ rankΛ(Hord(N ; OK)).

Proof. The degree [Q(f) : Q(ϵ)] is equal to the number of distinct Galois
conjugates of f by the absolute Galois group GQ(ϵ) of Q(ϵ). Let us assume
that our local coefficient field K is large enough to contain Q(f) and all of
its Galois conjugates. Call these Galois conjugates f1 = f, f2, . . . , fn. Each



Classical forms of weight one in ordinary families 183

fi is a classical weight one eigenform of the same level and character as f ,
i.e. each fi ∈ S1(Γ1(Np) ∩ Γ0(pr), ϵ; OK).

Crucially, we know that f is ordinary since it is a specialization of an
ordinary family Hord(N ; OK). As Galois conjugates of an eigenform with fi-
nite slope, each fi necessarily has finite slope. But since the slope of a finite
slope classical weight k eigenform must be between 0 and k − 1 by Theo-
rem 2.11, we conclude that each fi is in fact ordinary, since k− 1 = 0 when
k = 1. So each fi is in the ordinary subspace Sord

1 (Γ1(Np) ∩ Γ0(pr), ϵ; OK).
This entire space is a quotient of Hord(N ; OK)/P1,ζHord(N ; OK) for some
height one prime ideal P1,ζ of Λ by Proposition 3.4, so in total we have that

[Q(f) : Q(ϵ)] = the number of distinct Galois conjugates of f by GQ(ϵ)

≤ rankOK
(Sord

1 (Γ1(Np) ∩ Γ0(pr), ϵ; OK)
≤ rankOK

(Hord(N ; OK)/P1,ζHord(N ; OK))
≤ rankΛ(Hord(N ; OK)).

Note that the first inequality holds since distinct Galois conjugates of f
are linearly independent, as they lie in distinct eigenspaces for the action
of the Hecke algebra. □

Remark 3.6. If we are willing to use the Ramanujan conjecture for classi-
cal weight one eigenforms, then it is likely that Lemma 3.5 already provides
a sufficient input to prove our main result without appealing to the con-
structions of Section 4 and Section 5. The goal of Section 4 and Section 5
is to find a method by which the Hecke field bound of Lemma 3.5 can be
propagated into regular weight, where Theorem 6.1 may be applied. We
expect that Theorem 6.1 can be adapted to require only that the forms in
question satisfy the Ramanujan conjecture; see Remark 6.3 for a discussion
of adapting Hida’s result to the weight one case.

Note that the Ramanujan conjecture is known for weight one forms, hav-
ing been proved by Deligne–Serre as a consequence of their construction of
the Galois representations attached to weight one forms in [9]); our interest
in finding a method which avoids using the Ramanujan conjecture is so that
this strategy also applies to the case of partial weight one Hilbert modular
forms, where the Ramanujan conjecture is still open.

Remark 3.7. We remark that the principle encapsulated by Lemma 3.5
is unique to weight one. For forms of weight k ≥ 2 it is frequently the case
that not all Galois conjugates of a given p-ordinary form are p-ordinary. In-
deed, one may think of Hida’s characterization of CM families Theorem 6.1
as saying that for non-CM ordinary eigenforms, the proportion of Galois
conjugates which are also ordinary goes to 0 as we increase the level.
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3.4. Components with complex multiplication. In this section we
briefly recall properties of the CM components of the Λ-adic ordinary Hecke
algebra. The interested reader should consult Section 7 of [14] for a more
thorough account of CM components.

We sketch the construction of CM components outlined by Hida in [14].
Let E be an imaginary quadratic field in which our fixed prime p splits as
(p) = pp. Fix an integral ideal m of E which is coprime to p; this m will
serve as the tame conductor of our CM components. Let W be the idèle
class group of E of conductor mp∞, that is

W = A×
E/UE

×
∞E×

where U =
∏
ℓ ̸=p Uℓ, with Uℓ the entire group of integral units of the com-

pletion Eℓ if ℓ is coprime to m, and Uℓ being those integral units which
are congruent to 1 mod m if ℓ divides m. The group Γ = 1 + pZp injects
into Up which itself injects into W . Moreover since the idèle class group of
conductor m is finite we have that Γ has finite index in W .

Let us assume that our coefficient ring OK is large enough to contain the
values of all characters of the finite group W/Γ. Define A = OKJW K to be
the OK group ring of W . Then the inclusion Γ → W gives a map on group
rings Λ → A which realizes A as a finite free Λ-module.

Attached to an algebraic Hecke character ψ on E of conductor mpr for
some r ≥ 0 is a compatible system of p-adic Hecke characters {ψp}; the
p-adic avatar ψp of ψ can be though of as continuous p-adic character of
W . If ψ is an algebraic Hecke character inducing the CM eigenform fψ, we
have that the map A → OK corresponding to ψp : W → O×

K realizes the
Hecke eigensystem of fψ inside OK . Let M = NormK

Q(m), and let −d be
the discriminant of E/Q. In particular we have that

aℓ(f) =
{

0 ℓ is inert in E/Q
ψ(l) + ψ(l) ℓ splits as ll in E/Q

for primes ℓ ∤ dMp. Since these quantities vary continuously with the char-
acter ψ, we can patch them together into a single map with coefficients in
A, which interpolates (the p-stabilizations of) the modular forms fψ. Let-
ting Ψ : W → A× be the tautological character, there is a map which is
defined at least on the Tℓ Hecke operators as

Hord(dM ; OK) −→ A

Tℓ 7−→
{

0 ℓ is inert in E/Q
Ψ(l) + Ψ(l) ℓ splits as ll in E/Q.

The full details of this construction are presented in Theorem 7.1 of [14].
The components I of Hord(dM ; OK) which have CM by E are those for
which the map Hord(dM ; OK) → I factors through this map to A.
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Proposition 3.8. Suppose that I is a reduced, irreducible component of
Hord(N ; OK). If a CM eigenform of weight k ≥ 2 arises as a specialization
of I, then I is a CM component, and in particular every specialization of I
has CM by the same imaginary quadratic field.

Proof. Let f be a CM eigenform arising from I. We know by Theorem 3.2
that there is a unique component of Hord(N ; OK) giving rise to f . By
assumption this component is I, however the construction above produces
a CM component which specializes to any given CM eigenform. Thus we
must have that I itself is one of the CM components constructed above. □

We return to the description of Hecke fields, building an explicit descrip-
tion of the Hecke fields of CM components. This is essentially a combination
of Lemma 2.7 with the explicit description of CM components given above.

Lemma 3.9. Suppose that I is a reduced, irreducible CM component of
Hord(N ; OK). Let E be the imaginary quadratic field by which I has CM,
and let h be the class number of E. Fix a weight k ≥ 2. There are elements
a1, . . . , ah of K such that any weight k specialization f of I has

Q(f) ⊆ E(µhNp∞ , a
1/h
1 , . . . , a

1/h
h ).

In particular the Hecke field of each weight k form arising from I has its
Hecke field contained within a fixed finite extension of the p-th cyclotomic
field Q(µp∞).

Proof. Suppose that f1, f2 are any two (CM) forms of weight k arising from
I, each as the theta series attached to an algebraic Hecke character ψ1, ψ2.
We know by the construction of I that the character ψ1ψ

−1
2 has finite p-

power order (it is an algebraic Hecke character of trivial infinity-type). Pick
a1, . . . , ah as in Lemma 2.7 as applied to the form f1. Since the character
ψ1ψ

−1
2 is finite order and moreover has p-power order, we see that in the

presence of all p-power roots of unity (and the required “tame” roots of
unity of order hN) these same ai generate over E a field containing the
Hecke field of f2. Since we could take f2 to be any form of weight k arising
from I, we see that the field E(µhNp∞ , a

1/h
1 , . . . , a

1/h
h ) contains the Hecke

field of any weight k specialization of I. □

Remark 3.10. Hida’s characterization of CM families, stated in this article
as Theorem 6.1, can be interpreted as a converse of Lemma 3.9. Lemma 3.9
shows that the Hecke fields of forms arising from a CM component are
uniformly controlled. Hida’s result Theorem 6.1 shows that any component
of Hord(N ; OK) which has sufficiently controlled Hecke fields in a single
weight must be a CM component. It is worth noting that Theorem 6.1 is
much weaker than requiring that a component has uniformly controlled
Hecke fields; rather it only requires that for a density 1 set of primes ℓ, the
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degree of the “ℓ-Hecke field” Q(aℓ(f)) remains bounded over Q(µp∞) as
one varies over forms f of a fixed weight which arise from I.

Under the assumption that the family in question has infinitely many
classical forms of low weight, we establish this boundedness of Hecke fields
across the entire family using the special properties of Hecke fields in low
weight as embodied by Lemma 3.5, along with the rigidity principles of
Section 4 and construction of Section 5 to extend from low weight to regular
weight.

4. Rigidity principles for p-adic power series

In this section we prove rigidity results for integral extensions of p-adic
power series rings. These results will be used to propagate the bounded-
ness of Hecke fields in low weight to regular weight, where the Ramanujan
conjecture is known and Hida’s theorem (stated as Theorem 6.1) relating
boundedness of Hecke fields and complex multiplication may be applied. In
particular the boundedness of Hecke fields in low weight is what motivates
the conditions of Theorem 4.12; see Subsection 5.2 for the application of
this theorem to the coefficients of the characteristic polynomial of Frobe-
nius elements in a high-dimensional representation of the absolute Galois
group of Q.

We fix the following notation for use in this section.
• K is a finite extension of Qp, with ring of integers O, uniformizer
π, and residue field F.

• Cp is the completion of an algebraic closure ofK, OCp is the integral
closure of O within Cp, and mCp is the maximal ideal of OCp .

• As in Subsection 1.3 ordp is the valuation on K and extensions
thereof, normalized so that ordp(p) = 1.

• Λ = OJT K is the ring of formal power series in one variable with
coefficients in O.

• M is the integral closure of Λ in some finite extension of Frac(Λ).

4.1. Weierstrass preparation and Newton polygons. The Weier-
strass preparation theorem and the theory of Newton polygons will be
the basic tools we use to describe the behaviour of elements of Λ and M .
Recall that a distinguished polynomial f(T ) ∈ O[T ] ⊂ Λ is a monic poly-
nomial such that every coefficient other than the leading one is divisible
by the uniformizer π. With this notion we can state the p-adic Weierstrass
preparation theorem.

Theorem 4.1 (p-adic Weierstrass preparation). If F (T ) ∈ Λ is non-zero
there is a unique way to write it as

F (T ) = πkf(T )u(T )
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where k ≥ 0 is an integer, f(T ) is a distinguished polynomial, and u(T ) is
a unit in Λ (in other words, the constant term of u is an element of O×).

For a proof of the p-adic Weierstrass preparation theorem, see Theo-
rem 2.2 in Chapter 5, Section 2 of [24].
Lemma 4.2. If F (T ) ∈ Λ is non-zero, then for any t ∈ mCp (i.e. t ∈ Cp

and ordp(t) > 0) the series F (t) converges in Cp. Moreover such F (T ) have
only finitely many roots t ∈ mCp.

Proof. Let F (T ) = πkf(T )u(T ) in Weierstrass preparation. If ordp(t) > 0,
then u(t) converges since ordp(tn) = n · ordp(t) goes to infinity with n, and
ordp(u(t)) = 0 since the unit constant term of u(T ) dominates the norm
of any term involving t. Thus F (t) = πku(t)f(t) converges since f is a
polynomial and u converges at t. Finally we see that since u(t) is always a
unit, we have F (t) = 0 if and only if f(t) = 0, and f necessarily has finitely
many roots in Cp as it is a polynomial. □

Lemma 4.3. Let F (T ) have Weierstrass preparation F (T ) = πkf(T )u(T )
where f(T ) has degree d. If t ∈ mCp with 0 < ordp(t) < ordp(π)

d , then
ordp(F (t)) = k · ordp(π) + d · ordp(t).

Proof. We compute the valuation of F (t) using its Weierstrass preparation
ordp(F (t)) = ordp(πk) + ordp(u(t)) + ordp(f(t)).

We have that ordp(πk) = k · ordp(π), and ordp(u(t)) = 0 since the unit
constant term dominates the norm. Finally we have that ordp(f(t)) = d ·
ordp(t) since the leading term td has smaller valuation than any of the other
terms of f(t), as d · ordp(t) < ordp(π) and every other term has valuation
at least ordp(π) since f(T ) is a distinguished polynomial. □

We recall the construction of Newton polygons for polynomials over Cp.
Suppose that f(X) =

∑d
i=0 aiX

i in Cp[X]. We plot the points (d− i,
ordp(ai)) in the plane (allowing points “at ∞” if some of the coefficients ai
are 0 and hence have infinite valuation), and form their lower convex hull.
The resulting set of line segments in the plane is called the Newton polygon
of f . The usefulness of Newton polygons lies in the fact that this simple
combinatorial construction gives us total knowledge of the valuations of the
roots of f .
Theorem 4.4. Suppose that the Newton polygon of f consists of n line
segments, with the i-th segment having horizontal length ℓi and slope mi.
If there is a line segment of infinite slope it must occur at the end, and in
that case we consider the length ℓi to be such that Xℓi divides f exactly.
Then for each i in the range 1 ≤ i ≤ n there are ℓi roots of f which have
valuation equal to mi.
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See Chapter 3, Section 3 of [23] for more information on the theory of
Newton polygons. Note that Koblitz’s convention for Newton polygons is
slightly different from ours; his Newton polygons are vertical reflections of
ours. Koblitz’s convention has the benefit of also applying easily to power
series, at the drawback that the slopes of the polygon correspond to inverses
of the valuations of the roots. Our convention is chosen so that the slopes
are the valuations, and we won’t need to use Newton polygons for non-
polynomial power series.

We will use Newton polygons to study specializations of elements of M ,
where M is the integral closure of Λ in a finite extension of Frac(Λ). Suppose
that we have a ring homomorphism P : M → Cp which extends the ring
homomorphism Pt : Λ → Cp given by T 7→ t ∈ mCp . In a slight abuse of
notation we call P a Cp-valued point of M (rather than of Spec(M)). Given
F ∈ M , we write F (P ) rather than P (F ), thinking of F as an “algebraic”
analytic function, to align with how we think of elements of Λ as analytic
functions. Note that if F ∈ Λ, F (Pt) is simply the power series F evaluated
at t.

Remark 4.5. Suppose that we’re given F ∈ M , and P is a Cp point
of M , extending the Cp point Pt of Λ. If R(T,X) is a monic irreducible
polynomial satisfied by F , we have that R(T, F ) = 0 in M , and so also
R(t, F (P )) = 0 in Cp. By computing the Newton polygon of R(t,X) we
can obtain the valuation of F (P ); in particular for t ∈ mCp of sufficiently
small valuation we get that each coefficient of R(t,X) has valuation of the
form di ·ordp(t)+ki ·ordp(π) as in Lemma 4.3. We then have that for ordp(t)
sufficiently small, ordp(F (P )) = a·ordp(t)+b for some positive rational a, b.
Of course since all of the valuations involved are rational there is always
some choice of a and b making the above statement true; the point is that
the Newton polygon produces such a choice for us, and those a and b can
computed from the Weierstrass preparations of the coefficients of R(T,X).

Lemma 4.6. Let F be an element of M . If there is an infinite set of S of
Cp points of M such that F (P ) = 0 for all P ∈ S and each P ∈ S is of the
form T 7→ tP ∈ mCp when restricted to Λ, then F = 0.

Proof. Let R(T,X) ∈ Λ[X] be a monic irreducible polynomial which F
satisfies. Since R(t, F (P )) = 0 for any P ∈ S, the constant term a0(T ) of
R(T,X) must satisfy a0(tP ) = 0 for each of the infinitely many points P .
Since each point T 7→ tP of Λ extends to at most finitely many points of
M , there must be infinitely many such t. By Lemma 4.2 since the constant
term of R(T,X) has infinitely many roots t in mCp it must be 0. Since
R(T,X) is irreducible by assumption, we must have that R(T,X) = X,
and hence F = 0. □
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Lemma 4.7. Let R(T,X) ∈ Λ[X]. For all t ∈ mCp with ordp(t) sufficiently
small, the vertices of the Newton polygon of R(t,X) occur at the same
indices.

Proof. The Newton polygon of a monic degree d polynomial is completely
determined by the set of valuations of the coefficients. Thinking about the
set of valuations as living in Rd, we have a stratification of Rd according
to which vertices lie in the Newton polygon. The condition of an index
contributing a vertex to the Newton polygon is given by a collection of linear
inequalities; in other words the set of valuations having a given vertex in the
Newton polygon is a finite intersection of half-spaces in Rd. The boundary
of these half-spaces correspond to multiple vertices lying on the same line
segment of the Newton polygon. Note that even though the valuation map
takes values in Q ∪ {∞} rather than R we are simply working with the
defining inequalities over R, and if needs be maybe we may replace any
infinite valuations with sufficiently large non-infinite valuations without
affecting any of the arguments.

We know that for t ∈ Cp with ordp(t) sufficiently small, the coefficients of
R(t,X) have valuation of the form a·ordp(t)+b by Lemma 4.3. Say that the
i-th coefficient of R(T,X) has valuation ai·ordp(t)+bi for ordp(t) sufficiently
small. We consider the curve in Rd given by s 7→ (a1s + b1, . . . , ads + bd).
Since the image of this curve is an affine line, we have that for a half-space
in Rd the curve must satisfy one of the following three possibilities:

• the curve is contained entirely within the interior of either the half-
space or its complement,

• the curve is contained entirely in the boundary of the half-space,
• the curve intersects the boundary of the half-space exactly once.

Since there are only finitely many affine conditions involved in defining
the stratification, we see that the curve will intersect the boundaries of
strata transversally only finitely many times. Therefore for s ∈ (0, ϵ) for a
sufficiently small ϵ the image of the curve will be entirely contained within
a single stratum (moving from s = 0 to s > 0 may change strata, but the
curve cannot encounter a boundary within a sufficiently small interval above
0). Since the valuations of the coefficients of R(t,X) for ordp(t) sufficiently
small land on this curve, we see that the vertices of the Newton polygon
occur at the same indices for any t with 0 < ordp(t) < ϵ and ordp(t) small
enough for each coefficient of R(T,X) to satisfy Lemma 4.3. □

4.2. Bounded sums of roots of unity. In this section we prove our
main result on the rigidity of algebraic power series. By algebraic power
series we mean elements of integral extensions M of Λ. Our main result
(Theorem 4.12) is the following: if an algebraic power series is a sum of
at most B roots of unity when specialized at infinitely many points which
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extend points of the form T 7→ ζ − 1 for p-power roots of unity ζ, then it
is a power series which is a linear combination of at most B terms of the
form

(1 + T )e =
∞∑
n=0

(
e

n

)
Tn

where for e ∈ Zp,
(e
n

)
is the usual binomial coefficient

(e
n

)
= e(e−1)...(e−n+1)

n! .
We call power series of the form (1 + T )e “exponential” power series. This
result is inspired by the rigidity results used by Hida in his work on the rela-
tionship between Hecke fields and complex multiplication for ordinary fam-
ilies. For example see Lemma 5.1 and Proposition 5.2 of [17], see also [18],
[19], and [20] for variations on these statements. In a different context,
similar results are also used in [30] and [31] in studying p-adic families of
automorphic forms over imaginary quadratic fields.

In Hida’s work the need for these rigidity lemmas arises in the following
way. Given infinitely many ℓ-Weil numbers of bounded degree over Q(µp∞)
(ℓ a prime different from p), there are only finitely many up to equivalence
(two Weil numbers are equivalent if their quotient is a root of unity, see
Corollary 2.2. of [19]). Hence if F is an algebraic power series specializing
to ℓ-Weil numbers at roots of unity, it must be the case that after dividing
out by some Weil number we have a power series which takes values in µp∞

infinitely often. The algebraic power series F in question are those interpo-
lating Frobenius eigenvalues across a p-ordinary family of modular forms.
Applying the rigidity statement allows us to produce forms in this family
with controlled Hecke fields, and from there use those forms to establish
that the family has complex multiplication.

We are interested in rigidity statements that apply to algebraic power
series specializing to a bounded number of roots of unity infinitely often.
The main difficulty in establishing rigidity statements for algebraic power
series specializing to a bounded number of roots of unity, rather than a
single root of unity, is that cancellation between different terms can interfere
with precise control of valuations. The following facts about quotients of
rings of integers are crucial to putting limits on the possible cancellations
that can occur among sums of roots of unity.

Lemma 4.8. Suppose that O/πn has characteristic p, i.e. n is less than
or equal to the ramification index e = [O : W (F)]. Then F[x]/xn ∼= O/πn,
with the isomorphism given by x 7→ π.

Proof. Since O/πn has characteristic p, the Teichmüller lift map F → O/πn
given by a 7→ limm→∞ ãp

m , where ã is any lift of a, is an algebra homo-
morphism. Consider the map F[x] → O/πn given by x 7→ π. This map is
surjective since O/πn is generated by Teichmüller lifts and π. The kernel
of this map is (xn), and so we have the claimed isomorphism. □
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Remark 4.9. Suppose that ζ is a primitive pn-th root of unity, and O =
W (F) is the ring of integers of an unramified extension of Qp. Then for
m < n we have that (ζpm − 1) = (ζ − 1)pm as ideals of O[ζ] by comparing
valuations. Since ζpm − 1 has positive valuation less than 1, the quotient
O[ζ]/(ζpm − 1) has characteristic p, and is a polynomial ring F[x]/xpm by
Lemma 4.8. Moreover, by changing variables to y = x+ 1 we see that

F[y]
ypm − 1 −→ O[ζ]

ζpm − 1
y 7−→ ζ

is an isomorphism.
We begin by proving our main result in the special case of an algebraic

power series which takes values in µp∞ infinitely often. This proof serves
as a good introduction to the ideas in the proof of Theorem 4.12 while
being less technical. The first appearance of this result is in [17], where two
proofs are given; our strategy builds off of the second proof in [17] which
Hida credits to Kiran Kedlaya.
Theorem 4.10 (Lemma 5.1 in [17]). Suppose that we are given the follow-
ing data:

• an element F in an integral extension M of Λ
• an infinite set S ⊂ µp∞

• for each ζ ∈ S, a Qp point Pζ of M which extends the point T 7→
ζ − 1 of Λ

with the property that for each ζ ∈ S, F (Pζ) is a power of ζ. Then there is a
root of unity ξ′ and exponent e ∈ Zp such that F ∈ Λ[ξ′] and F = ξ′(1+T )e.
Remark 4.11. In Hida’s formulation of this result (which is stated for
power series only rather than elements of integral extensions of Λ), it is
only required that F (Pζ) ∈ µp∞ for infinitely many ζ. While this may seem
more general in that F (Pζ) could potentially be a p-th root of ζ for all ζ,
the control of valuations as in Remark 4.5 and Lemma 4.7 is enough to
show that if we have such an F ∈ Λ, then in fact F (Pζ) is a power of ζ for
all ζ of sufficiently large order.
Proof. Let eζ be any integer such that F (Pζ) = ζeζ . Since Zp is compact,
the infinite set of eζ must have a limit point e ∈ Zp. We restrict S to a
subset such that eζ → e as the multiplicative order of ζ goes to ∞. Define
G(T ) = (1+T )e. Define H = F−G, and let R(T,X) be a monic irreducible
polynomial in Λ[X] which H satisfies.

On one hand we know from Remark 4.5 and Lemma 4.7 that there are
positive rational numbers a, b such that for ζ ∈ S of sufficiently large order
we have

ordp(H(Pζ)) = a · ordp(ζ − 1) + b.
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On the other hand we can compute directly that if ζ ∈ S is of order pn,
and eζ ≡ e mod pm for n ≥ m, then

ordp(H(Pζ)) = ordp(ζeζ − ζe)
= ordp(ζeζ−e − 1)
≥ ordp(ζp

m − 1)
= pm · ordp(ζ − 1).

since ζeζ−e has multiplicative order at most pn−m. Choosing our ζ of large
enough order so that pm > a, we see by comparing our two expressions for
ordp(H(Pζ)) that we must have b > 0.

Fix a k such that b > 1
φ(pk) (note that 1

φ(pk) = ordp(ζp
n−k − 1) for ζ of

order pn). Then if ζ ∈ S is a primitive pn-th root of unity for n > k and eζ
is sufficiently p-adically close to e, we have that H(Pζ) = 0 in the quotient
ring Rζ = Zp[ζ]/(ζp

n−k − 1); this follows by computing valuations since
ordp(H(Pζ)) ≥ ordp(ζp

n−k − 1) by the above choices. As in Remark 4.9 we
have that Rζ is isomorphic to a truncated polynomial ring Fp[y]/(ypn−k −1)
where the isomorphism sends y 7→ ζ. In order for yeζ −ye = 0 in Rζ it must
be the case that eζ ≡ e mod pn−k for all such ζ. However there are only
finitely many values that ζeζ−e can take if eζ ≡ e mod pn−k as this must be
a pk-th root of unity. So if we choose ξ′ such that ζeζ−e = ξ′ for infinitely
many ζ, we see that F − ξ′(1 +T )e is 0 when specialized at infinitely many
of the Pζ . Therefore Lemma 4.6 shows that F = ξ′(1 + T )e. □

We are now in place to prove the main result of this section. Before
doing so we sketch the idea of the proof, which follows the same strategy
as Theorem 4.10. Given an F as in Theorem 4.12, we use the density of
the exponents appearing to produce a guess G(T ) for the form of F which
is a linear combination of exponential power series. We can show that the
difference F − G is p-adically close to 0 under many specializations; the
challenge is to show that this is because the terms of F match up with the
terms of G to cancel out, rather than the terms of F cancelling out with
each other. By working in the quotient ring by an appropriate power of
(ζ − 1) as in Remark 4.9 we are in a polynomial ring, where we can ensure
that unexpected cancellations are limited. Some cancellation between terms
may still occur, but we can classify such cancellations into groups of terms
which are consistently close to each other p-adically. This grouping allows
us to refine our guess G, possibly reducing the value B, and repeat until
we’ve ruled out all possible unexpected cancellations.

Theorem 4.12. Suppose that we are given the following data:
• an element F in an integral extension M of Λ
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• a constant B ∈ Z≥0
• an infinite set S ⊂ µp∞

• for each ζ ∈ S, a Qp point Pζ of M which extends the point T 7→
ζ − 1 of Λ

• a root of unity ξ
• coefficients c1, . . . , cB ∈ Z[ξ]

with the property that for each ζ ∈ S, F (Pζ) ∈ Z[ξ, ζ] and F (Pζ) can be
written in the form

F (Pζ) =
B∑
i=1

ciζ
eζ,i

for some exponents eζ,i. Then there is a root of unity ξ′, coefficients di ∈
Z[ξ′], and exponents ei ∈ Zp such that F ∈ Λ[ξ′] and

F =
B∑
i=1

di(1 + T )ei .

Proof. The proof proceeds by induction on B. If B = 0, we have that
F (Pζ) = 0 for infinitely many points Pζ , and Lemma 4.6 allows us to
conclude that F = 0, which is of the desired form. The bulk of the proof
is therefore to show that given such an F as in the theorem statement, we
may write F in the form G + F1, where G is a power series of the desired
form (a linear combination of terms of the form (1 + T )e) and F1 satisfies
the assumptions of the theorem with a smaller value of B than that of F .

The first step is to construct a candidate expression G, and then to show
that the specializations of H = F − G at many of the points Pζ are p-
adically close to 0. Considering the eζ,i as integers, we have an infinite set
of points in ZBp . Since ZBp is compact, the set of tuples eζ,i must have a
limit point (e1, . . . , eB) ∈ ZBp . Define

H = F −
B∑
i=1

ci(1 + T )e

as an element of M [ξ], and let R(T,X) ∈ Λ[X] be a monic irreducible
polynomial satisfied by H.

Let us restrict ourselves to an infinite subset of S such that as the multi-
plicative order of ζ ∈ S goes to infinity we have that eζ,i → ei for each i. We
know from Lemma 4.7 that for ζ of sufficiently large multiplicative order
the Newton polygon of R(ζ − 1, X) is stable, and hence the specialization
H(Pζ) for ζ ∈ S must have valuation determined by one of the slopes of
this polygon. Passing to a further infinite subset of S we may assume that
the specialization has valuation determined by a single line segment in the



194 Eric Stubley

stable Newton polygon, and hence for ζ of large multiplicative order we
must have that

ordp(H(Pζ)) = a · ordp(ζ − 1) + b

for some fixed rational a and b. Since we know that the eζ,i → ei, let us
restrict to ζ of sufficiently large multiplicative order so that eζ,i ≡ ei mod
pm for m chosen large enough to ensure that pm > a. Then we have that

ordp(H(Pζ)) ≥ min
i

(ordp(ci(ζeζ,i − ζei)))

= min
i

(
ordp(ciζei(ζeζ,i−ei − 1))

)
≥ min

i
(ordp(ci)) + ordp(ζp

m − 1)

≥ min
i

(ordp(ci)) + pm · ordp(ζ − 1)

using the construction of H and our choice of ζ large enough ensuring that
eζ,i−eζ is divisible by pm. Combining these two perspectives on ordp(H(Pζ))
we get that

a · ordp(ζ − 1) + b ≥ pm · ordp(ζ − 1) + min
i

ordp(ci).

Since pm > a by construction, we see that b > mini ordp(ci). In particular
let c be one of the coefficients achieving the minimum valuation, then for
every ζ ∈ S we have that c−1H(Pζ) has valuation at least v > 0 for some
constant v. Note that c−1H(Pζ) is still an element of Zp[ξ, ζ] rather than
Qp(ξ, ζ) since each coefficient ci has valuation at least that of c.

Pick a k such that v > 1
φ(pk) . If ζ ∈ S is a primitive pn-th root of

unity for n > k, we know that ζpn−k is a primitive pk-th root of unity,
and by valuations we have that c−1H(Pζ) = 0 in the quotient ring Rζ =
Zp[ξ, ζ]/(ζp

n−k − 1). As in Remark 4.9 we have that this quotient ring Rζ
is isomorphic to a truncated polynomial ring F[y]/(ypn−k − 1) where F is
the residue field of Zp[ξ, ζ] and the isomorphism sends y to ζ. We restrict
S to those ζ of large enough multiplicative order pn so that

• if ei ̸= ej , then ei ̸≡ ej mod pd, and n− k > d,
• if eζ,i ≡ ei mod pm for each i = 1, . . . , B, and ei ̸≡ ej mod pd, then
n − k > m > d. In particular this forces eζ,i ̸≡ eζ,j mod pn−k if
ei ̸= ej .

We know that c−1H(Pζ) = 0 as an element of Rζ ; we also have by simply
reducing the expression that

c−1H(Pζ) = c−1
B∑
i=1

ci(yeζ,i − yei)

in Rζ . Since this expression is equal to 0 in Rζ and ζ is chosen large enough
to ensure that the powers of y associated to ei ̸= ej cannot interact in
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Rζ (as these powers are distinct mod pn−k), there must be cancellation
occurring among the terms corresponding to each of the values ei. These
cancellations must be some combination of the following three possibilities:

• the coefficients c−1ci are 0 in Rζ ; this cannot happen for all coef-
ficients, as at least one of these is equal to 1 since c = ci for some
i = 1, . . . , B.

• a set of the coefficients ci sums to 0 in F, and the corresponding
terms yeζ,i have exponents which are congruent mod pn−k (simi-
larly the corresponding terms yei have exponents congruent mod
pn−k which in fact implies they are equal).

• eζ,i ≡ ei mod pn−k.
There are finitely many patterns that such cancellations can occur in,

so restrict to an infinite set of S such that the same cancellation pattern
occurs for each ζ in the restricted S. If two terms ζx and ζy have exponents
that agree mod pn−k, then ζy = ζxζ0 for a root of unity ζ0 of order dividing
pk. Since there are finitely many such ζ0, we restrict to an infinite subset of
S where, after collapsing down terms in the cancellation pattern with ex-
ponents congruent modpn−k, the pattern of pk-th roots of unity appearing
is the same. Note that this collapsing must occur at least once since not all
of the coefficients c−1ci are 0 in F.

We are now in the situation where for an infinite subset of S we have
that

F (Pζ) =
B∑
i=1

c′
iζ
e′

ζ,i

where the c′
i are in Z[ξ, ζ0] for a primitive pk-th root of unity ζ0, and for

at least some indices i the e′
ζ,i are either equal to ei mod pn for all ζ or

there are several i for which the eζ,i are equal for all ζ. Thus through a
combination of combining coefficients with equal e′

ζ,i or subtracting off a
term of the form c′

i(1+T )ei we have a new F1 ∈ M [ξ, ζ0] which satisfies the
assumptions of the theorem (with an enlarged integral extension M and
base ring Z[ξ] and) with a smaller value of B. □

4.3. Sums of exponential power series. In this section we collect sev-
eral results on power series of the form F (T ) =

∑n
i=1 di(1 + T )ei . Given

such a power series F , define πi = (1 + p)ei . The use of πi is that the
specializations of F that we are interested in (namely at points extending
Pk,ζ : T 7→ ζ(1 + p)k−1 − 1) can all be expressed using the πi:

F (Pk,ζ) =
n∑
i=1

diζ
eiπk−1

i .
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In particular F (Pk,ζ) ∈ Q(ζ, di, πi), so if we control the field of definition
of the di and πi, we have control of the field of definition of F (Pk,ζ).

The F that we will use arise from families of modular forms; in particular
F (Pk,ζ) will be related to Hecke eigenvalues of classical modular forms of
weight k and character coming from ζ, and will be algebraic. Our goal in
this section is to show that under assumptions of the algebraicity of di and
F (Pk,ζ) we have that the πi are algebraic. We begin with the following
combinatorial lemma.

Lemma 4.13. Suppose that we are given non-zero algebraic numbers
d1, . . . , dn and distinct p-adic integers e1, . . . , en. Then there are distinct p-
power roots of unity ζ1, . . . , ζn such that the matrix with entries xi,j = diζ

ei
j

has non-zero determinant.

Proof. We proceed by induction on n, with the base case n = 1 being
satisfied by the choice of ζ = 1 since d1 ̸= 0.

Assume by induction that we’ve chosen ζ1, . . . , ζm for some m < n such
that the m × m matrix with entries xi,j = diζ

ei
j for 1 ≤ i, j ≤ m has

non-zero determinant. Choose k large enough so that e1, . . . , em+1 are dis-
tinct modulo pk and such that ζ1, . . . , ζm are all in µpk . Let ẽi be the
unique integer which satisfies 0 ≤ ẽi < pk and ei ≡ ẽi mod pk. Consider the
(m+ 1) × (m+ 1) matrix with entries

yi,j =
{
xi,j j ≤ m

diX
ẽi j = m+ 1

where X is a formal variable. The determinant of this matrix is thus a poly-
nomial in X which is necessarily non-zero as each matrix entry containing
X appears with a different power of X so no cancellation can occur between
them, and there is at least one term (the X ẽm+1 term) which appears with
a non-zero coefficient, by the inductive hypothesis guaranteeing that the
upper left minor of the matrix has non-zero determinant. The degree of
this determinant polynomial is one of the ẽi, hence it is strictly less than
pk. Since there are pk roots of unity in µpk , not every element of µpk can be
a root of this polynomial, hence there is a choice of ζm+1 ∈ µpk which pro-
duces a non-zero determinant when we set X = ζm+1. Note that ζm+1 ̸= ζj
for any 1 ≤ j ≤ m, as that would cause two columns of the matrix to be
equal (and the determinant to be 0).

Finally we conclude that this choice of ζm+1 satisfies the original claim
with ei instead of ẽi: since ei ≡ ẽi mod pk, we have that ζei

m+1 = ζ ẽi
m+1 for

each i. □

This lemma is used in the following proposition to show that the πi are
algebraic, given algebraicity assumptions on the di and specializations of
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F . The strategy of the proof is to realize (powers of) the πi as solutions to
a system of linear equations in the di and specializations of F .

Proposition 4.14. Suppose that F (T )∈OJT K is of the form
∑n
i=1di(1+T )ei

for some non-zero di ∈ O and distinct ei ∈ Zp. Assume further that the
di are algebraic, and that there is an integer k ≥ 2 such that F (Pk,ζ) is
algebraic for almost all ζ ∈ µp∞. Then πi = (1+p)ei is algebraic for each i.

Proof. Applying Lemma 4.13 we see that there exists distinct p-power roots
of unity ζ1, . . . , ζn such that the system of equations

F (Pk,ζ1) = d1ζ
e1
1 π

k−1
1 + . . . + dnζ

en
1 πk−1

n
... =

...
...

...
F (Pk,ζn) = d1ζ

e1
n π

k−1
1 + . . . + dnζ

en
n πk−1

n

having “coefficients” diζei
j has a unique solution (the matrix of these coeffi-

cients is invertible), the solution being the πk−1
i . Note that we may choose

our ζj of sufficiently large multiplicative order to guarantee that the F (Pk,ζ)
are algebraic.

By Cramer’s rule the solutions πk−1
i to the system of equations above

have polynomial expressions in terms of the quantities F (Pk,ζ) and diζei
j . As

all of these quantities are algebraic, we conclude that the πk−1
i are algebraic,

and hence the πi themselves are algebraic. □

5. Construction of large Galois representations

In this section we perform the construction which will allow us to propa-
gate information about the degrees of Hecke fields between different weights
in our ordinary families.

The idea behind this construction is to essentially take the trace over a
character field of the Galois representations attached to a component of the
ordinary Hecke algebra which contains many weight one specializations. We
do this to put ourselves in a situation where the characteristic polynomials
of Frobenius will have cyclotomic integer coefficients at many weight one
specializations, so that the results of Subsection 4.2 apply. This will allow
us to propagate the fact that we have bounded Hecke fields in weight one to
higher weights, where we are allowing ourselves to utilize the Ramanujan
conjecture and we may apply results of Hida to deduce that our component
of the ordinary Hecke algebra has complex multiplication. This link with
higher weight will occur in the next section; in this section we content
ourselves with performing this trace construction and showing that the
results of Subsection 4.2 apply to the resulting characteristic polynomials
of Frobenius.
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We set up the following notation for use in this section.
• Fix a prime p.
• For some large enough finite extension O of Zp, Λ = OJT K is the

weight space for p-ordinary Hecke algebras. We use the notation
Pk,ζ for the map Λ → Qp given by T 7→ ζ(1 + p)k−1 − 1; where it
will not cause confusion we also use Pk,ζ as notation for the kernel
of this map.

• Fix a tame level N ∤ p.
• We let Hord be the Λ-adic ordinary Hecke algebra Hord(N ; O) with

tame level N .

5.1. Selecting components. Our basic assumption will be that we have
a component I of Hord which specializes to infinitely many classical weight
one eigenforms. By an extended pigeonhole principle argument, we select
several more components of Hord with the property that together these
components see all Galois conjugates of the classical weight one forms aris-
ing from I.

Theorem 5.1. Suppose that I = Hord/P is a reduced, irreducible com-
ponent of Hord, with the property that there are infinitely many classical
weight one eigenforms arising as specializations of I. Then there is an in-
finite set R of classical weight one eigenforms arising from I such that the
following hold.

(1) There is an integer m ≤ rankΛ(Hord) such that each f ∈ R has
exactly m Galois conjugates over its character field.

(2) There are reduced, irreducible components Ii = Hord/Pi of Hord for
i = 1, . . . ,m and for each f ∈ R there is a Qp-point Pf,i of Ii with
the following property. In some ordering f1, . . . , fm of the m Galois
conjugates of f over its character field, the system of eigenvalues of
fi arises as the specialization of Ii at the point Pf,i. We may take
f1 = f and I1 = I.

(3) There exists a finite Galois extension Frac(M) of Frac(Λ) with M
the integral closure of Λ, together with fixed embeddings ei : Ii → M .

(4) For each f ∈ F there is a Qp-point Pf of M with the property that
for each i = 1, . . . ,m, we have that

Pf |ei(Ii) = Pf,i.

(5) Define r : GQ →
⊕m

i=1 GL2(Frac(Ii)) to be the direct sum of the Ga-
lois representations attached to each of the Ii. Using the embeddings
ei we can think of r as having image in GL2m(Frac(M)). Denote
MPf

the localization of M at the kernel of Pf ; then for each f ∈ R,
the image of r lands in GL2m(MPf

), and so can be pushed forward
through Pf to obtain a representation rf : GQ → GL2m(Qp).
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Proof. The theorem is an extended application of the pigeonhole principle.
We show the conclusions of the theorem one at a time; at each stage we
refine the results from the previous step while maintaining an infinite set
of weight one forms.

We know from Lemma 3.5 that any weight one form which is parameter-
ized by Hord has at most rankΛ(Hord) Galois conjugates over its character
field. Thus from our initial set of infinitely many classical weight one forms
there must be an m ≤ rankΛ(Hord) which occurs infinitely often as the
number of Galois conjugates over the character field. Restrict to only those
f having exactly m Galois conjugates over their character field, and call
this set R1. This shows (1).

To show (2), we use that Hord has only finitely many irreducible com-
ponents since it is finite over Λ, which is irreducible. For a given f ∈ R1,
its m Galois conjugates over its character field arise from some set of m
components of Hord. Since there are only finitely many possible such sets of
components, one must occur for infinitely many f ∈ R1. Let R2 be an infi-
nite subset of R1 for which all f ∈ R2 have their Galois conjugates arising
from the same set of m components. Pick this set of components and label
them I1, . . . , Im such that (in some ordering) the conjugates f1, . . . , fm sat-
isfy that fi arises from Ii. Without loss of generality we may assume that
I = I1 and f = f1. Note that for each f ∈ R2 we have a Qp-point Pf,i of
Ii with the property that the specialization of Ii at Pf,i is the system of
Hecke eigenvalues of fi.

The integral extension M/Λ as in (3) can be constructed as follows. Each
Ii is an integral domain finite over Λ, so Frac(Ii) is a finite extension of
Frac(Λ). Take the Galois closure of the compositum of these fields Frac(Ii);
this is some finite extension of Frac(Λ), and we take M as the integral
closure of Λ inside that field. If P is the point of I giving rise to f , choose
any extension of P to a point Pf of M .

For a given f ∈ R2, we have points Pf,i of Ii for i = 1, . . . ,m. Since
the Galois action is transitive on points in fibers of M/Λ, there is some
embedding of Ii into M such that Pf,i is the restriction of Pf to the image
of Ii. As there are only finitely many embeddings Ii → M for each i, there
are only finitely many possible choices total. Since for each f ∈ R2 there is
at least one choice of embeddings Ii → M with the desired compatibility
between points, and R2 is infinite, there must be some choice of embeddings
ei : Ii → M such that for an infinite subset R3 ⊆ R2 we have the desired
compatibility of points. This shows (3) and (4) of the theorem.

As in the statement of the theorem we define r to be the representation

r : GQ −→
m⊕
i=1

GL2(Frac(Ii))
⊕m

i=1 ei

↪−→ GL2m(Frac(M))
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obtained as the direct sum of the Galois representations attached to each
Ii, viewed as having coefficients in Frac(M). We would like to be able to
specialize r : GQ → GL2m(Frac(M)) through the map Pf : M → Qp in
order to recover the representations attached to each fi; however without
knowing that M is a unique factorization domain it may not be possible
to find a basis of V = Frac(M)2m in which r takes values in GL2m(M).
For a given Pf we can always extend the point Pf to have domain MPf

(localization of M at the kernel of Pf ), so it will suffice to show that r has
coordinates in MPf

for an infinite subset of R3.
The group GQ is compact, so there is a lattice L ⊂ Frac(M)2m which

is stable under the action of GQ through r. Each element of r can thus be
though of equally well as an element of EndM (L). We claim that EndM (L)
is a finitely generated M -module. Let a1, . . . , an be a set of generators for L
as an M -module. Given an n× n matrix X = {xi,j} with coefficients in M
we say that X descends to L if the map given by ai 7→

∑n
j=1 xi,jaj defines

an endomorphism of L; note that for any endomorphism of L there is at
least one such matrix. The subset of EndM (Mn) of those matrices which
descend to L is an M -submodule. Since M is noetherian (it is a finite
extension of the noetherian ring Λ) we have that any submodule of the
finitely generated EndM (Mn) is finitely generated. In particular one such
submodule surjects onto EndM (L), proving that it is finitely generated.

Viewing each generator of EndM (L) as an element of GL2m(Frac(M)),
we see that it has at most finitely many “poles”, where by “pole” we mean
a Qp point P of M such that the entries of that element of GL2m(Frac(M))
are not in MP . Since there are finitely many generators of EndM (L), each
with finitely many poles, we see that there are at most finitely many Qp

points of M which can arise as poles of an element r(g). After removing
finitely many of the points in R3 in order to avoid these poles, we obtain a
set R and have that the image of r lands in GL2m(MPf

) for each f ∈ R. □

The representation r defined in Theorem 5.1 is what we’ll use to propa-
gate control of Hecke fields from weight one into regular weight. Since our
main focus will be on the specializations of r through the primes Pf of M ,
we set rf to be that specialization

rf : GQ −→ GL2m(Frac(M))
Pf−→ GL2m(Qp)

which is well-defined by part (5) of Theorem 5.1. We begin with some basic
properties of the representations r and rf .

Lemma 5.2. The representation r : GQ → GL2m(Frac(M)) satisfies the
following properties.

(1) For primes ℓ ∤ Np, r is unramified at ℓ.
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(2) For every g ∈ GQ, the characteristic polynomial of r(g) has coeffi-
cients in M rather than Frac(M).

(3) For every f ∈ R, the representation rf : GQ → GL2m(Qp) is equal
to the direct sum of the p-adic Galois representations attached to
the conjugates f1, . . . , fm of f .

Proof. (1) is immediate as r is constructed as a direct sum of representa-
tions which are unramified at primes ℓ ∤ Np. Part (2) is a consequence of
continuity of the representation as we now show. The characteristic poly-
nomial map GQ → Frac(M)[X] given by g 7→ det(XI − r(g)) is continuous
since r itself is continuous and taking characteristic polynomials is con-
tinuous. For primes ℓ as above, each of the direct summands of r has the
property that characteristic polynomials of Frobℓ land in Ii; the trace and
determinant are Hecke operators and so are in Ii rather than Frac(Ii).
Since the characteristic polynomial of the direct sum is simply the product
of the characteristic polynomials, we see that the characteristic polynomial
of r(Frobℓ) has coefficients in M . Finally since the Frobℓ are topologically
dense in GQ by the Cebotarev density theorem, we see that every element
in the image of r must have characteristic polynomial in M [X] since it is a
closed subset of Frac(M)[X].

Part (3) of this lemma is a consequence of parts (3) and (4) of
Theorem 5.1. By our choice of embeddings we have that Pf restricted
to Ii produces the system of Hecke eigenvalues of fi; hence r : GQ →⊕2m

i=1 GL2(Frac(Ii)) will specialize to the direct sum of the ρfi,p. □

Since the representation r is unramified at primes ℓ ∤ Np, we introduce
notation for the characteristic polynomial of r(Frobℓ). Let

Aℓ(X) =
2m∑
j=0

Aℓ,jX
j = det(XI − r(Frobℓ)).

Note that the coefficients Aℓ,j of Aℓ(X) lie in M as per Lemma 5.2. The
key property of the representation r is contained in the following theorem,
where we show how the choices in the construction of r lead to control
over the field of definition of the specializations rf . In particular studying
the specializations rf will amount to studying the specialized characteristic
polynomials of Frobenius Aℓ(Pf )(X) = det(XI − rf (Frobℓ)).

Theorem 5.3. Suppose that f ∈ R and Pf is the corresponding Qp-point
of M as in Theorem 5.1. Then for a prime ℓ ∤ Np we have that the charac-
teristic polynomial Aℓ(Pf )(X) of rf (Frobℓ) has coefficients in the character
field of f .

Proof. Let f1, f2, . . . , fm be the m Galois conjugates of f = f1. Let Q(ϵ)
and Q(f) be, respectively, the character and Hecke fields of f . For each fi,
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let αi, βi be the eigenvalues of ρfi,p(Frobℓ) (so that the Tℓ-eigenvalue of fi
is equal to αi+βi). We then have by Lemma 5.2 that Aℓ(Pf )(X) factors as

Aℓ(Pf )(X) =
m∏
i=1

(X − αi)(X − βi)

since rf is the direct sum of the representations ρfi,p. The coefficients
Aℓ,j(Pf ) of Aℓ(Pf )(X) are thus (up to sign) the elementary symmetric
polynomials of degree 2m evaluated at the αi and βi.

We know that α, β are in a degree at most 2 extension of Q(f) since they
satisfy a degree 2 polynomial with coefficients in Q(f) (the characteristic
polynomial of ρf,p(Frobℓ)). For any positive integer n, the expression αn+βn
is invariant under switching these two roots, hence it must itself be in Q(f).
Therefore we have that the power sum

∑m
i=1 α

n
i + βni is in Q(ϵ), since it is

a field trace:
m∑
i=1

αni + βni = TraceQ(f)
Q(ϵ) (αn + βn).

Since both the power sums and the elementary symmetric polynomials
are generating sets (over Q or extensions thereof) for the space of symmetric
polynomials, all of the elementary symmetric polynomials can be expressed
as polynomial combinations with rational coefficients of the power sums.
We’ve shown that the power sums of the αi, βi all lie in the character field
Q(ϵ), so the coefficients of Aℓ(Pf )(X) will also lie in Q(ϵ). □

5.2. Rigidity of Frobenius characteristic polynomials. The goal is
this section is to show that the coefficients of the characteristic polyno-
mial of r(Frobℓ) are constrained as in Theorem 4.12. We’ve seen in the
previous section that the specialized characteristic polynomials take values
in cyclotomic fields (the characteristic polynomial of rf (Frobℓ) has coeffi-
cients in the character field of f). Since these characteristic polynomials
are also necessarily integral, the coefficients must be cyclotomic integers,
that is, elements of Z[ζ] for some root of unity ζ. Following Cassels [6] and
Loxton [25] we define the following quantities for a cyclotomic integer α:

• N(α) = the minimal natural number n such that α can be written
as a sum of n roots of unity.

• α = the maximum of the complex absolute values of α. This is
called the house of α.

The following theorem of Loxton relates these two measures of the size of
α; this is the key link between the bounds we know on the sizes of Hecke
eigenvalues and the rigidity results of Subsection 4.2.
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Theorem 5.4 (Loxton, Theorem 1 of [25]). Choose a real number d with
d > log (2). Then there is a positive constant c depending only on d such
that if α is a cyclotomic integer with

N(α) = n

then
α

2 ≥ c · n · exp(−d log (n)/ log (log (n))).
As explained in the introduction of [25], this theorem allows us to bound

N(α) if we have a bound on α . In particular if we know that

α
2
< c · n · exp(−d log (n)/ log (log (n)))

then it must be the case that N(α) < n. Since the expression c · n ·
exp(−d log (n)/ log (log (n))) is increasing in n, if we have an absolute bound
α

2 for some collection of cyclotomic integers α, then it forces an absolute
bound on the N(α).
Lemma 5.5. There is a constant Cℓ,j, depending only on ℓ and j, such
that for each f ∈ R we have

Aℓ,j(Pf ) ≤ Cℓ,j .

Proof. This follows from the fact that the Frobenius eigenvalues α and β
of ρf,p(Frobℓ) have house bounded by a polynomial in ℓ by Theorem 2.10.
The construction in the proof of Theorem 5.3 shows that Aℓ,j(Pf ) is a
polynomial expression with rational coefficients in α and β and their Galois
conjugates, which all satisfy the same Archimedean bound coming from
Theorem 2.10. Applying the triangle inequality liberally to the expression
for Aℓ,j(Pf ) we obtain a bound on Aℓ,j(Pf ) which is polynomial in the
bound on α , β . Since this polynomial expression in α and β and their
conjugates is the same for all f in R, and the bound on α , β is the same
for all f in R, we obtain a uniform (in f) upper bound on Aℓ,j(Pf ) . □

Lemma 5.6. Fix a prime ℓ of F such that ℓ ∤ Np. Then for each j in the
range 0 ≤ j ≤ 2m the coefficient Aℓ,j of the characteristic polynomial of
r(Frobℓ) satisfies the assumptions of Theorem 4.12.
Proof. For any f ∈ R, we have by Theorem 5.3 that Aℓ,j(Pf ) is in the
character field Q(ϵ) which is a cyclotomic field. Since Aℓ,j(Pf ) is an elemen-
tary symmetric polynomial evaluated at integral inputs (the eigenvalues of
ρf,p(Frobℓ) are integral), it is integral, and hence is a cyclotomic integer.

Fix j, and let Cℓ,j be the upper bound on all Aℓ,j(Pf ) established in
Lemma 5.5. Choose n sufficiently large so that

C2
ℓ,j < c · n · exp(− log (n)/ log (log (n)))
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where c is the constant associated to d = 1 > log (2) of Theorem 5.4.
Choosing such an n is possible since the function on the right is unbounded
in n. Theorem 5.4 then guarantees for us that N(Aℓ,j(Pf )) < n, i.e. each
Aℓ,j(Pf ) can be written as a sum of fewer than n roots of unity.

Let ξ be a root of unity that generates the tame (i.e. prime to p) part
of the character fields Q(ϵ) (changing f only changes the p-power roots
of unity present). Among the finitely many combinations of B < n and
possible powers of ξ used to write an integral element of Q(ϵ) as a sum of
B roots of unity, we pick one that occurs infinitely often among the Aℓ,j(Pf )
for f ∈ R. For the subset R′ of R where this combination occurs, we let B
and c1, . . . , cB be the chosen values, and
S = {ζ ∈ µp∞ : there is f ∈ R′ such that Pf extends the point P1,ζ of Λ}.

With this data Aℓ,j satisfies the assumptions of Theorem 4.12 and hence is
a linear combination of exponential power series. □

6. Bounded Hecke fields

Now that we have constructed our representation r and controlled the
form of its characteristic polynomials of Frobenius using the rigidity results
of Section 4, we are in a good position to specialize in regular weight. The
advantage of regular weight is that we can apply results of Hida on the
complexity of Hecke fields associated to non-CM ordinary families in order
to conclude that our family has CM. The flavour of Hida’s results is that if
the Hecke fields of the forms in an ordinary family are sufficiently compli-
cated (as measured by their degree relative to the p-cyclotomic extension
Q(µp∞)), then the family cannot have complex multiplication. Put another
way, if the Hecke fields of an ordinary family are sufficiently bounded then
that family has CM.

Hida has published several variations on theorems of this flavour. In
Subsection 6.1 we sketch the proof of the version of this result that we use.
We then assemble the results of Section 5 together with Hida’s Hecke field
result to prove our main theorem in Subsection 6.2.

We keep the notation introduced at the start of Section 5. Most impor-
tantly Hord is a Λ-adic Hecke algebra parametrizing p-ordinary modular
forms having a fixed tame level and character.

6.1. Hida’s results on bounded Hecke fields. Hida has proven several
variations on theorems of this flavour (see [17, 18, 19, 20]). In this section
we build off of [19] as it works with Hecke fields away from p (i.e. degrees
of aℓ for ℓ ∤ Np rather than ap). We found it to be more convenient to
take this approach rather an approach that relies on bounding ap, although
in principle such a strategy could also work in our situation. We offer a
sketch of the proof of this theorem; the main idea is to use Theorem 4.10 to
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find two eigenforms f and g whose p-adic Galois representations are “too
similar” unless I is a CM family.

Of course we could also attempt to use this result directly for elliptic
modular forms of weight one, as the Ramanujan conjecture is known for
these forms! However, our goal is to access our main result without utilizing
the Ramanujan conjecture in low weight, so that there is the possibility of
our strategy generalizing to the case of Hilbert modular forms of partial
weight one.

Theorem 6.1 (Hida, Theorem 3.1 of [19]). Suppose that we are given the
following data:

(1) a set Σ of primes of Q of positive density
(2) for each ℓ ∈ Σ a constant Cℓ > 0
(3) an infinite set of p-power roots of unity S
(4) a fixed integer k ≥ 2
(5) a reduced, irreducible component I = Hord/P of Hord

(6) for each ζ ∈ S, a point Pk,ζ of I extending the point Pk,ζ of Λ
with the property that for each ζ ∈ S, the specialization I(Pk,ζ) (which is a
classical modular eigenform fζ) has its Hecke fields satisfying the following
bounds

[Q(µp∞ , aℓ(fζ)) : Q(µp∞)] ≤ Cℓ

for each ℓ ∈ Σ. Then I has complex multiplication.

Proof Sketch. For ℓ ∈ Σ let αℓ be a choice of root of the characteristic poly-
nomial of ρI(Frobℓ) where ρI is the p-adic Galois representation attached
to I. We assume that I is large enough to contain αℓ, extending it and the
points Pk,ζ if necessary. Since k ≥ 2 the Ramanujan conjecture is known
for the specializations fζ of I under Pk,ζ . As a consequence of the Ramanu-
jan conjecture we have that αℓ(Pk,ζ) is an ℓ-Weil number. Our condition
bounding the degrees of Hecke fields yields that αℓ(Pk,ζ) has degree at most
2Cℓ over Q(µp∞). As there are only finitely many such ℓ-Weil numbers up
to equivalence (see Corollary 2.2 of [19]), we pick πℓ which occurs infin-
itely often up to equivalence as the specialization αℓ(Pk,ζ) for ζ ∈ S. Thus
we have that π−1

ℓ αℓ specializes to a p-power root of unity infinitely often,
hence by a generalization of Theorem 4.10 which allows for p-power roots
of (1 + T )(see Proposition 4.1 of [19]), αℓ is of the form πl(1 + T )eℓ with
eℓ ̸= 0 ∈ Qp for each ℓ ∈ Σ.

Choose a p-power root of unity ζ ̸= 1, and consider the forms f and
g which arise as specialization of I by Pk,1 and Pk,ζ . We assume for a
contradiction that neither f nor g has complex multiplication.

We let αℓ(f) = αℓ(Pk,1) be the Frobenius eigenvalue of f produced by αℓ,
and similarly αℓ(g) = αℓ(Pk,ζ). By our control of αℓ we know that αℓ(g) =
ζeℓαℓ(f). Since the characteristic polynomial of ρf (Frobℓ) (with any choice
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of coefficients) has constant term a power of ℓ times a root of unity, we see
that a similar relationship holds with the second eigenvalue of Frobenius
of each form f, g. Choosing a prime q which splits completely in Q(f, g)
(the compositum of the Hecke fields Q(f) and Q(g)) for convenience, we
see that if ζm = 1 that

Trace(ρf,q(Frobℓ)m) = Trace(ρg,q(Frobℓ)m)
for each ℓ ∈ Σ. Using that

Trace(ρm) = Trace(Symm(ρ)) − Trace(Symm−2(ρ) ⊗ det(ρ))
for any 2-dimensional representation ρ, we obtain

Trace
(
Symm(ρf,q) ⊕

(
Symm−2(ρg,q) ⊗ det(ρg,q)

))
= Trace

(
Symm(ρg,q) ⊕

(
Symm−2(ρf,q) ⊗ det(ρf,q)

))
when evaluated on any Frobℓ for ℓ ∈ Σ.

Since f and g are not CM forms by assumption, we claim that for q
sufficiently large the image of their q-adic Galois representations contains
an open subgroup of SL2(Zq). The residual representations contain SL2(Fq)
for large enough q (see Section 0.1 of [11]), and the classification of compact
subgroups of SL2(Zq) shows that we must therefore have an open subgroup
of SL2(Zq) in the image. In particular since the representations in question
are irreducible and Σ has positive density, a result of Rajan (see Theorem 2
of [28]) guarantees that we have an equality of representations

Symm(ρf,q) ⊕
(
Symm−2(ρg,q) ⊗ det(ρg,q)

)
= Symm(ρg,q) ⊕

(
Symm−2(ρf,q) ⊗ det(ρf,q)

)
when restricted to a finite index subgroup GK of GQ. We also have that
Symm(ρf,q) = Symm(ρg,q) ⊗ χ for some finite order character χ, using the
same result of Rajan.

Since the representations ρf,q and ρg,q are members of compatible sys-
tems, so are their symmetric powers. Since one member of the compati-
ble system Symm(ρf ) agrees with one member of the compatible system
Symm(ρg) ⊗ χ, the whole systems agree; thus we conclude that for the
prime p

Symm(ρf,p) = Symm(ρg,p) ⊗ χ.

We know that the p-adic Galois representation of a p-ordinary form is upper
triangular when restricted to the decomposition group at p. In particular
we know that ρf,p|GQp has the form[

ωk−1
p ψf ∗

0 λf

]
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for some characters ψf , λf ; similarly ρg,p|GQp is of that form with characters
ψg, λg. Since the symmetric powers agree up to twist, we have an equality
of sets of characters

{ωi(k−1)
p ψifλ

m−i
f : i = 0, . . . ,m} = {ωi(k−1)

p ψigλ
m−i
g χ : i = 0, . . . ,m}.

Note that λf , λg are unramified, and ψf , ψg have finite order on inertia
with ψf ̸= ψg on inertia by the choice of ζ ̸= 1. By comparing powers
of the cyclotomic character which appear in the above equality of sets of
characters, we conclude that ψifλ

m−i
f = ψigλ

m−i
g χ for each i = 0, . . . ,m.

Rearranging we get that
ψif
ψig

=
λm−i
g

λm−i
f

χ

for each i = 0, . . . ,m; in particular when restricted to inertia this yields
ψi

f

ψi
g

= χ for each i. Taking i = 0 we see that χ is unramified, but taking
i = 1 shows that χ must be non-trivial on inertia. This is a contradiction.

The only assumption that we made outside of the original hypotheses
was that neither f nor g has CM, in order to use the fact that Galois rep-
resentations attached to non-CM forms have large image. Since we arrived
at a contradiction it must be the case that at least one of them has CM,
and hence the whole component I has CM by Proposition 3.8. □

Remark 6.2. While Hida’s proof is written in the case of parallel weight
k ≥ 2 Hilbert modular forms, and we’ve only sketched the argument in
the case of elliptic modular forms, the argument applies almost verbatim
to the partially ordinary families and fixed regular weights (k,w) discussed
in Section 7. The only necessary difference in the partially ordinary cases
comes right at the end when extracting a contradiction from the equality of
sets of characters. In the partially ordinary case it is natural to work with
Galois representations having a fixed determinant, rather than determinant
varying with the weight as is the common choice for elliptic modular forms.
Since we’re working with a fixed weight and varying the Nebentypus char-
acter, there’s no obstruction to still matching up characters based on the
power of the cyclotomic character that appears (i.e. based on their Hodge–
Tate weights). From there a slightly modified argument from the elliptic
case provides a contradiction, so long as the chosen ζ has sufficiently large
order.

Remark 6.3. One might ask if Theorem 6.1 can be applied to a set of
classical weight one eigenforms arising from I and having appropriately
bounded Hecke fields. There are two places where the regular weight as-
sumption is used in the proof. First, the fact that the Frobenius eigenval-
ues in the Galois representation attached to a regular weight form are Weil
numbers, which is a consequence of the Ramanujan conjecture. Second, the
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fact that the ℓ-adic Galois representation attached to a non-CM eigenform
of regular weight has large image for sufficiently large ℓ.

If we are willing to use the (known!) Ramanujan conjecture for weight
one eigenforms then the first use of the regular weight assumption can be
taken care of. The second presents more difficulty in generalizing directly
to the weight one case. However, we expect that given the strong control
over Frobenius eigenvalues across the entire component I provided by the
Ramanujan conjecture it should be possible to start with bounded Hecke
fields in weight one to establish rigidity of the Frobenius eigenvalues, and
then carry out the rest of Hida’s argument in regular weight.

We remark once again that the role of Section 4 and Section 5 is to
provide a method by which bounds on Hecke fields may be propagated
from low weight into regular weight.

6.2. Proof of the main theorem. We are finally in a position to assem-
ble all the ingredients of the previous two sections in order to prove our
main theorem. We remind the reader that the main goal is to prove that a
component I of Hord has CM if it admits infinitely many classical weight
one specializations, which we do by propagating information about Hecke
fields from low weight into regular weight so that we many apply Hida’s
result Theorem 6.1.

Theorem 6.4. A reduced irreducible component I of Hord has CM if and
only if it admits infinitely many classical weight one specializations.

Proof. If I has CM, then any specialization in a classical weight is a classical
CM form; in particular there will be infinitely many classical weight one
eigenforms arising as specializations of a CM component I. Thus the real
task in this proof is to show that if I admits infinitely many classical weight
one specializations, then I has CM.

We show that the conditions of Theorem 6.1 apply if we are given such
an infinite set of classical weight one specializations, which is now just a
matter of assembling the ingredients of Section 4 and Section 5. In fact
we’ll show a stronger statement than necessary to apply Theorem 6.1. For
each ℓ ∤ Np we produce a constant Cℓ such that for almost all classical
specializations f of I we have that

[Q(µp∞ , aℓ(f)) : Q(µp∞)] ≤ Cℓ.

We recall that the main result of Section 5 was the construction of a Ga-
lois representation r : GQ → GL2m(Frac(M)) for some integral extension
M of Λ. The key property of r is that for some infinite set R of classical
weight one specializations of I we have for f ∈ R that

r : GQ −→ GL2m(Frac(M))
Pf−→ GL2m(Qp)
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is well-defined, and equal to the direct sum of the p-adic Galois represen-
tations attached to the external Galois conjugates f1, . . . , fm of f over its
character field. In Lemma 5.6 we showed that each coefficient Aℓ,j of the
characteristic polynomial Aℓ(X) =

∑2m
j=0Aℓ,jX

j of r(Frobℓ) is controlled
by the rigidity results of Section 4. Namely, for each j = 0, . . . , 2m we have
an expression

Aℓ,j =
nj∑
i=1

di,j(1 + T )ei,j

for some algebraic di,j and p-adic integers ei,j .
A final key feature of the representation r is that it “sees” almost all

classical specializations of I. If f is a classical eigenform arising as the
specialization of I through a Qp point P , denote by P again an extension
of this point to M . Then for almost all P we have that the image of r lands
in GL2m(MP ) (as in part (5) of Theorem 5.1), so we can push forward r
through P to obtain a representation into GL2m(Qp). By the construction
of r as a direct sum of representations attached to components of Hord, we
see that ρf,p is a direct summand of this specialization of r. In particular
this shows that the Frobenius eigenvalues αf , βf of ρf,p(Frobℓ) are roots of
Aℓ(P )(X). Since the other direct summands of this specialization of r are
the Galois representations attached to other classical forms, we may also
conclude that all coefficients of Aℓ(P )(X) are algebraic.

We now make use of our exact formula for the Aℓ,j , as explained in
Subsection 4.3. Define πi,j = (1 + p)ei,j . Since almost all specializations
of I in weights k ≥ 2 are classical and are witnessed by r, we have that
almost all specializations Aℓ,j(Pk,ζ) are algebraic, as these specializations
are polynomial combinations of Frobenius eigenvalues of classical forms.
Thus Proposition 4.14 shows that the πi,j are all algebraic.

We conclude that for almost all points Pk,ζ of I for k ≥ 2 satisfy that
Aℓ(Pk,ζ)(X) has coefficients in Lℓ(ζ), where

Lℓ = Q({di,j}, {πi,j}).

Note that Lℓ is a finite extension of Q since we’ve adjoined finitely many
algebraic quantities to Q. Therefore for almost all f arising as specializa-
tions of I we have that the eigenvalues of ρf,p(Frobℓ), and hence also the
Tℓ-eigenvalue aℓ(f), lie in a degree at most 2m extension of Lℓ(ζ), since
they are roots the degree 2m polynomial Aℓ(P )(X) which has coefficients
in Lℓ(ζ). Adjoining all p-power roots of unity, we see that aℓ(f) has degree
at most 2m[Lℓ : Q] over Q(µp∞).

Define Cℓ to be this constant

Cℓ = 2m[Lℓ : Q]
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which depends only on I and ℓ, and not on our choice of regular weight
specialization.

We are now ready to apply Theorem 6.1. Fix any weight k ≥ 2, and let
S be the complement in µp∞ of the finite set of ζ where the representation
r has a pole at a point above Pk,ζ . We’ve established that for all primes
ℓ ∤ Np the classical eigenforms f arising from I above points Pk,ζ for ζ ∈ S
satisfy

[Q(µp∞ , aℓ(f)),Q(µp∞)] ≤ Cℓ.

This is the condition under which Theorem 6.1 applies to show that I has
CM. □

7. Hilbert modular forms of partial weight one

In this section we discuss extensions of our method to the case of partial
weight one Hilbert modular forms. Our result doesn’t immediately gener-
alize to the commonly studied families of Hilbert modular forms, as one of
our key tools (Corollary 2.12) breaks down for these families. However we
will see that by choosing the right type of families (the “partially ordinary
families”) the same tools are available. We formulate several conjectures in
Subsection 7.3 and Subsection 7.4 which cover what our techniques should
prove given a suitable development of these partially ordinary families.

Fix a totally real field F of degree d = [F : Q] in which our prime p
splits completely. We will discuss Hilbert modular forms for the field F .

Appearing in the transformation law for a Hilbert modular form are
d weights k1, . . . , kd indexed by the real embeddings of F . By fixing an
isomorphism C → Cp, we get a bijection between the real and p-adic
embeddings of f , so we can equally well think of the first d weights as
being indexed by the p-adic places of f . It is common to introduce another
weight w which serves at the level of Galois representations to fix what
the determinant character should be. For elliptic modular forms this choice
is usually implicitly made so that the determinant character is a finite
order character times the k − 1st power of the cyclotomic character; when
considering families of Hilbert modular forms it is often convenient to be
able to vary this extra weight w with the other weights to get a desired
behaviour of the determinant of the associated Galois representations.

For each of the p-adic places v1, . . . , vd of F , there is an operator Uvi

acting on Hilbert modular forms of level divisible by vi. Suppose that f
is an eigenform for the operators Uvi , of weight (k1, . . . , kd, w). Under a
suitable choice of normalization for these operators depending on w, we
have for avi the eigenvalue of Uvi acting on f that

0 ≤ ordp(avi) ≤ ki − 1.
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For a p-adic place v of F we say that a Hilbert modular eigenform is v-
ordinary if its Uv eigenvalue is a p-adic unit; we say that f is p-ordinary if it
is v-ordinary for each v|p. Since the operators Uvi commute we can equally
define a p-ordinary Hilbert modular form to be one whose Up =

∏d
i=1 Uvi

eigenvalue is a p-adic unit.
Hida has constructed families of p-ordinary Hilbert modular forms. The

weight space for these families of forms is now d+1-dimensional, and much
of the theory that is familiar in the elliptic case is also known in the Hilbert
case. See [15] and [16] for the construction of these families.

7.1. Background on partial weight one forms. Compared to the case
of elliptic modular forms of weight one, very little is known about Hilbert
modular forms of partial weight one. It is expected that compared to Hilbert
modular forms of regular weight (i.e. those with all weights at least 2) there
are relatively few classical Hilbert modular forms of partial weight one
except those having CM. There are a few results known which establish the
non-existence of non-CM classical partial weight one eigenforms in very
specific settings, chiefly the work of Moy in [26] where it is proved that
there are no non-CM classical Hilbert modular forms of weight [k, 1], level
N = 1, over F = Q(

√
7) with quadratic Nebentypus character arising from

F (
√

−1).
One may ask whether or not any non-CM classical Hilbert modular forms

of partial weight one even exist! There is only a single known example of
a classical partial weight one which does not have complex multiplication,
constructed by Moy–Specter in [27].

It is reasonable to expect that finiteness results analogous to those known
for elliptic modular forms of weight one should hold for Hilbert modular
forms of partial weight one as well, as both of these types of objects fall un-
der the ℓ0 = 1 case of the framework developed by Calegari–Geraghty in [5]
for approaching modularity lifting through coherent cohomology. There is
a growing body of evidence for various types of ℓ0 = 1 situations that forms
not arising through base-change should be rare. For elliptic modular forms,
finiteness of non-base-change (i.e. non-CM) forms in a fixed tame level is the
result of Ghate–Vatsal which has been the main focus of this article. Regu-
lar algebraic cuspidal automorphic forms for GL3 over Q also fall under the
ℓ0 = 1 case of Calegari–Geraghty’s framework; the analogous question here
is whether in a given tame level all but finitely many such forms arise as
symmetric squares of forms for GL2 over Q. This question for level 1 forms
was studied by Ash–Pollack in [1], where they formulate precise conjectures
and provide computational evidence in low weights. Regular algebraic cus-
pidal automorphic forms for GL2 over imaginary quadratic fields provide
another example of the ℓ0 = 1 case; see the work of Serban in [31] for some
analogous results in that case.
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7.2. Galois conjugates of partial weight one forms. We lay out here
why the main strategy of this article does not immediately produce results
for partial weight one forms. The issue lies in generalizing Corollary 2.12.

Suppose that we have a Hilbert modular eigenform f , of partial weight
one. Explicitly let us say that the first r weights k1, . . . , kr are equal to
1, with the others kr+1, . . . , kd being greater than 1. Consider a Galois
conjugate fσ of f for some σ in the absolute Galois group of the character
field of f over F . This form fσ has the same weights as f , and its Hecke
eigenvalues are the Galois conjugates by σ of those of f .

Let us assume now that our starting form f is p-ordinary. By the same
argument as applied in Corollary 2.12, we have that fσ is still vi-ordinary
at those i for which ki = 1. However, all we know at the other p-adic places
is that the Uvi eigenvalue has valuation bounded between 0 and ki − 1 > 0.
This is why our method does not produce results immediately for partial
weight one forms living in Hida’s full p-ordinary families: Galois conjugation
may ruin ordinarity at non-weight-1 places.

The fact that Galois conjugates of elliptic p-ordinary eigenforms of weight
one remain p-ordinary was crucial to our strategy of characterizing families
containing many of these by studying their Hecke fields. In order to ap-
ply Hida’s characterization of CM families as those having bounded Hecke
fields, we need some input to bound our Hecke fields in low weight, so
analogs of Corollary 2.12 and Lemma 3.5 are necessary for our strategy to
function.

7.3. Partially ordinary families. However, all is not lost in generalizing
Corollary 2.12 to the partial weight one case. The argument outlined above
does show that if f has its first r weights equal to 1, and is vi-ordinary at
those corresponding p-adic places, then appropriate Galois conjugates of f
will still be vi-ordinary for each i = 1, . . . , r. Thus if we choose to work
with families of forms which are vi-ordinary for i = 1, . . . , r, we can hope
to recover a uniform bound on Hecke fields as in Lemma 3.5 for the forms
in this family which are weight one at v1, . . . , vr. The setback here is that
these “partially ordinary” families are not at all well-studied!

In [34], a candidate for a partially ordinary Hecke algebra is constructed
using the algebraic approach to Hida theory: Wilson works with algebraic
automorphic forms in the Betti cohomology of quaternionic Shimura vari-
eties of dimension 0 or 1, depending on the parity of d = [F : Q]. This
construction produces an algebra partially ordinary Hecke algebra which is
torsion-free over an appropriate Iwasawa algebra, and for which the con-
trol theorem is known only up to a finite kernel. Hida’s article [18] also
works with partially ordinary families. Hida sketches some parts of their
construction, but references [34] for many of their properties. In this article
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Hida states without proof the existence of the Galois representations at-
tached to these partially ordinary families. Partially ordinary families are
also discussed briefly in [32], again working cohomologically with quater-
nionic automorphic forms. We should mention that similar families have
been constructed independently by Yamagami in [35] and by Johansson–
Newton in [21]. Both Yamagami and Johansson–Newton work with more
general v-finite-slope rather than v-ordinary families, though one can think
of the ordp(Uv) = 0 locus in the v-finite-slope eigenvariety as being the
v-ordinary families that we study.

Worse than the fact that the literature on partially ordinary families is
not as mature as that of fully ordinary families is the fact that all existing
constructions of partially ordinary families are algebraic, rather than geo-
metric. The algebraic description has the downside that it does not give any
information about the inclusion of forms of partial weight one into these
families. Since it is crucial for us to know that every suitably v-ordinary
partial weight one form is included in such a family, we believe that a geo-
metric construction of these families is needed in order to apply them in
our situation.

The strategy of this article is adapted to deal with 1-dimensional families.
We state below what we expect our strategy to prove given a suitable
construction of 1-dimensional partially ordinary families, and in the next
section we outline how one might combine the result for 1-dimensional
families with a putative classicality result for partial weight one forms into
a statement about families of any dimension.

Fix weights k2, . . . , kd, w, all of which are odd and at least 3. We will
consider forms of weight (k, k2, . . . , kd, w), and we want the fixed weights to
be odd so that the partial weight one forms we work with are paritious (all
of the weights have the same parity, which guarantees algebraicity of Hecke
eigenvalues and GL2 rather than PGL2 valued Galois representations). The
first weight will be the one that varies across the family while the others
remain constant. We also fix a tame level N, which may be divisible by any
of v2, . . . , vd but is not divisible by v1. We suppose that we have constructed
a partially ordinary Hecke algebra H satisfying the following properties:

• For each prime l ∤ Nv1 of F, there is an element Tl ∈ H.
• For each prime l|Nv1 of F, there is an element Ul ∈ H.
• H is a finite free Λ = ZpJT K module.
• H is the “universal Hecke algebra” parametrizing v1-ordinary

Hilbert modular eigenforms of weight (k, k2, . . . , kd, w) and levels
Nvr1. More precisely, an analog of Theorem 3.1 holds for H.

• Associated to any component I of H is a Galois representation
GF → GL2(Frac(I)) interpolating the Galois representations of the



214 Eric Stubley

eigenforms which I specializes to. An analog of Theorem 3.3 holds
for these representations.

• Any v1-ordinary Hilbert modular eigenform of weight (1, k2, . . . ,
kd, w) arises as a specialization of H. An analog of Proposition 3.4
is what is required.

Given such a family H we expect that the strategy of this article imme-
diately adapts to prove the following conjecture, made in analogy with the
elliptic case.

Conjecture 7.1. Suppose that H is a partially ordinary Hecke algebra as
outlined above. Then a component I of H contains infinitely many classical
eigenforms of partial weight one if and only if that component has complex
multiplication.

7.4. Returning to full families. We turn now to the question of when
Hida’s full p-ordinary families contain many classical forms of low weight.
We note that the original technique of Ghate–Vatsal does adapt to the
case of families containing a Zariski dense set of classical parallel weight
one forms, the details of which are worked out in [2]. We therefore focus
on explaining how to recover a result characterizing full families which
contain a Zariski dense set of classical partial weight one forms under the
assumption of the result from the previous section for 1-dimensional families
along with a suitable classicality theorem.

By analogy with elliptic forms of weight one, we expect that forms which
are weight one at v and v-ordinary in fact have Galois representations which
are split, rather than just upper triangular, on a decomposition group at
v. It may be possible to extract this fact from the literature, though this
has not been clearly stated anywhere to the author’s knowledge. Moreover
we expect that this splitting of the local Galois representation characterizes
classical forms of partial weight one among p-adic forms. To be more precise,
we expect that “classicality” results of the following type hold: suppose that
f is a p-adic Hilbert modular eigenform for which

• the weight (k1, . . . , kd, w) of f is arithmetic (the ki are paritious
positive integers),

• for those i with ki > 1, f has finite Uvi slope in the range [0, ki − 1)
(analog of the classical Coleman classicality condition [7]),

• and for those i with ki = 1, the Galois representation attached to
f is split when restricted to a decomposition group at vi;

then (perhaps assuming some technical conditions on f and its Galois rep-
resentation) f is classical.

The literature on classicality theorems for (Hilbert) modular forms is
well-developed, though as yet no results have appeared for forms of partial
weight one. The basic techniques used are analytic continuation and gluing
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of overconvergent eigenforms, as pioneered by Buzzard–Taylor in [4], Buz-
zard in [3], and Kassaei in [22]. Much work has been done on extending
these techniques to the Hilbert setting; the simplest case is when p splits
in the extension F/Q where one can essentially apply the arguments of
the elliptic case “prime by prime” to establish analytic continuation over a
large enough region of the relevant Hilbert modular variety. We expect that
once the ecosystem for dealing with partial weight one forms is sufficiently
developed this prime by prime approach and the standard techniques for
establishing classicality results should prove such a result for partial weight
one forms.

Suppose that we have such a classicality result for partial weight one
forms and a construction of partially ordinary families as outlined in the
previous section. If we have a component of a full p-ordinary family which
has a Zariski dense set of classical specializations which are weight one at
one of the primes v|p, then by the Zariski density of these specializations
the Galois representation attached to the component must split on a de-
composition group at v. By the classicality result, we then get that any
point of the family which is weight one v and regular weight elsewhere
must be classical. In particular if we restrict to a 1-dimensional slice of
our component where only the weight at v is allowed to vary, our conjec-
ture for 1-dimensional families predicts that that slice of the full family has
complex multiplication, as that 1-dimensional slice is nothing other than a
component of a v-ordinary family. Since there are only finitely many possi-
ble imaginary quadratic extensions of F which a family with a given tame
level could have complex multiplication by, we see that infinitely many of
our 1-dimensional slices must have CM by the same imaginary quadratic
E/F . But then we have that our full family must overlap with a CM fam-
ily at a Zariski dense set of these 1-dimensional slices, meaning our full
p-ordinary family must in fact have CM.

We note a pleasing consequence of this at the level of Galois representa-
tions: assuming the classicality criterion described above and Conjecture 7.1
the argument in the previous paragraph shows that if the Galois represen-
tation attached to a component of a full p-ordinary family splits on a de-
composition group at one place v|p, then that component must have CM.
But CM families which are p-ordinary have Galois representations which
are split at each place above p! So if the Galois representation of a com-
ponent splits at one place above p we expect that it must split at all of
them.
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