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Curves of fixed gonality with many rational points

par Floris VERMEULEN

Résumé. Étant donné un entier γ ≥ 2 et une puissance q d’un nombre premier
impair, nous montrons que pour chaque genre g suffisamment grand, il existe
une courbe C définie sur Fq, non singulière, de genre g et de gonalité γ,
telle que son nombre de points rationnels est exactement γ(q + 1), c’est-à-
dire le maximal possible, démontrant ainsi une conjecture récente de Faber-
Grantham. Les méthodes que nous employons sont en lien avec l’étude des
courbes sur les surfaces toriques et avec les travaux de Poonen sur les valeurs
sans facteur carré de polynômes.

Abstract. Given an integer γ ≥ 2 and an odd prime power q we show that
for every large genus g there exists a non-singular curve C defined over Fq of
genus g and gonality γ and with exactly γ(q+1) Fq-rational points. This is the
maximal number of rational points possible. This answers a recent conjecture
by Faber–Grantham. Our methods are based on curves on toric surfaces and
Poonen’s work on squarefree values of polynomials.

1. Introduction
In this article we study the maximal number of rational points on curves

over finite fields. Curves will always be geometrically integral, but may be
singular. Let q be a prime power and fix a positive integer g. Define Nq(g)
to be the maximal number of Fq-rational points of a non-singular genus g
curve defined over Fq. The famous Weil bound yields that

Nq(g) ≤ 2√
qg + q + 1.

By work of Ihara [11] and later Vladut and Drinfeld [16], when g is large
compared to q, this bound can be improved to Nq(g) ≤ (√q− 1 + o(1))g as
g → ∞. To find lower bounds on the quantity Nq(g) one has to construct
non-singular curves with many rational points. Many approaches have been
developed to deal with this problem, and we refer to the introduction of [13]
for an overview. By work of Elkies, Howe, Kresch, Poonen, Wetherell and
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Zieve [4], it is currently known that for every q there exists some constant
c such that for every genus g

cg < Nq(g).

Now suppose that C is a curve over Fq equipped with a degree γ map
C → P1, also defined over Fq. Then since every Fq-rational point of C must
map to an Fq-rational point of P1 we have

(1.1) #C(Fq) ≤ γ(q + 1).

In particular, this is true when γ is equal to the gonality of C over Fq.
Recall that the gonality of a curve C is the minimal degree of a morphism
defined over Fq to P1. For a positive integer γ, denote by Nq(g, γ) the
maximal number of Fq-rational points on a non-singular genus g curve of
gonality γ, defined over Fq. By convention, if no such curve exists we put
Nq(g, γ) = −∞. In [8], van der Geer asks about the behaviour of this
function Nq(g, γ). Recently, this quantity has been studied for small q and
g by Faber and Grantham in [5] and [6]. They conjecture that for fixed
q, γ and g sufficiently large, we have Nq(g, γ) = γ(q + 1). We prove this
conjecture in odd characteristic.

Theorem 1.1. Let q be an odd prime power and fix a positive integer γ ≥ 2.
Then for all sufficiently large g, there exists a non-singular curve C defined
over Fq, of genus g and gonality γ, and with γ(q+ 1) Fq-rational points. In
other words

lim
g→∞

Nq(g, γ) = γ(q + 1).

For the proof, we will use the theory of curves on toric surfaces. The
idea is to construct the desired curve C inside a certain toric surface S.
Such a method was introduced by Kresch, Wetherell and Zieve in [13] to
construct non-singular curves over Fq of every sufficiently large genus g
with at least cqg

1/3 Fq-rational points, for some constant cq depending on
q. In our setting, we also want to control the gonality of C. It would be
desirable if C would be smooth in the surface S. However, S has only
roughly (q + 1)2 Fq-rational points, so we cannot hope for this if γ is large
compared to q. Instead, we construct C as a singular curve inside S. By
carefully controlling the singularities of C, we are able to control both the
rational points on C and the (geometric) genus of C. To do this we rely on
work by Poonen [15] to make sure that a certain discriminant polynomial
is squarefree. This is also where the condition that the characteristic is not
2 is needed.

In upcoming work together with Faber [7], we use another approach using
class field theory to try to prove Theorem 1.1. In particular, we are able to
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prove that for fixed q, γ, we have that
lim sup

g→∞
Nq(g, γ) = γ(q + 1)

where one can assume that the resulting covers C → P1 are all abelian.
In particular this holds when q is even. Nevertheless, we also argue that
abelian covers do not suffice to prove Theorem 1.1 in general.

2. Curves on toric surfaces
We will construct the desired curve having many rational points as a sin-

gular curve in a toric surface. This section contains the relevant background
material. We refer the reader to [3] and [13, Sec. 3] for more information.

Let k be a perfect field and let f ∈ k[t±1, y±1] be a Laurent polynomial.
Write f =

∑
i,j ci,jt

iyj . Then the Newton polygon of f is defined to be

∆(f) = conv{(i, j) | ci,j ̸= 0} ⊆ R2,

where conv denotes the convex hull. If ∆ ⊆ R2 is any lattice polygon we
denote by ∆(1) the convex hull of its interior lattice points. Assume now
that f is absolutely irreducible and let C̃ be the non-singular projective
model of the curve defined by f = 0 in the torus (k×)2. There is a strong
relation between the combinatorics of ∆(f) and the geometry of C̃. The
first result in this direction, proven by Baker, is that the genus of C̃ is
bounded above by the number of interior lattice points of ∆(f), i.e.

g(C̃) ≤ #(∆(f)(1) ∩ Z).

We will call this Baker’s bound, see [1]. The quantity #(∆(f)(1) ∩ Z) has
an interesting geometric interpretation. To explain, we introduce some toric
geometry. Let ∆ be a (2-dimensional) lattice polygon and consider the map

ϕ : (k×)2 → P#(∆∩Z2)−1 : (t, y) 7→ (tiyj)(i,j)∈∆∩Z2 .

Define S(∆) to be the closure of the image of ϕ, this is a toric surface. Its
fan is obtained by taking all primitive inward facing normals of ∆. Denote
the coordinates on P#(∆∩Z2)−1 by Xi,j for (i, j) ∈ ∆∩Z2. If f =

∑
i,j ci,jt

iyj

is an absolutely irreducible Laurent polynomial supported on ∆ and each
edge of ∆ contains a lattice point from ∆(f) then the hyperplane section∑

(i,j)∈∆
ci,jXi,j = 0

cuts out a curve C in S(∆). This curve is automatically birationally equiv-
alent to C̃ by our assumptions. Then the quantity #(∆(f)(1) ∩ Z2) is the
arithmetic genus ga(C) of the curve C, see [10] and [13, Lem. 3.4]. In par-
ticular, there is equality in Baker’s bound if and only if C is non-singular
in S(∆).
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Definition 2.1. Let f ∈ k[t±1, y±1] be an absolutely irreducible Laurent
polynomial and let ∆ ⊆ R2 be a lattice polygon. We say that f is a ∆-
polynomial if

(1) ∆(f) ⊆ ∆,
(2) every edge of ∆ contains a lattice point from ∆(f).

If moreover the genus of the curve defined by f = 0 is equal to the number
of interior lattice points of ∆, then we call f ∆-toric.

By the remarks above, a ∆-polynomial f is ∆-toric if and only if C is
non-singular in S(∆).

Suppose that f is a ∆-polynomial for some lattice polygon ∆ which is
contained in the strip R × [0, γ] for some positive integer γ. Then there is
naturally a morphism C → P1 of degree at most γ, obtained from the map

V (f) ⊆ (k×)2 → k× : (y, t) 7→ t.

If ∆ is not contained in any smaller horizontal strip of the form R × [a, b]
then this map has degree equal to γ.

Lemma 2.2. Let γ be a positive integer and let 0 = k0 ≤ k1 < k2 < · · · <
kγ be integers. Define ℓj =

∑j
i=0 ki and let f be an absolutely irreducible

Laurent polynomial over a field k with

∆(f) = conv{(0, 0), (ℓ1, 1), (ℓ2, 2), . . . , (ℓγ , γ), (m0, 0), (m1, 1), . . . , (mγ , γ)},

for certain integers mj > ℓj. Let C ⊆ S(∆(f)) be the curve defined by
f = 0 in S(∆(f)) and let π : C → P1 be the degree γ map as above. Then
π−1(0) consists of γ distinct non-singular k-rational points.

Note that we are not saying anything about C being non-singular above
other points of P1. See also [13] for a similar argument to construct curves of
a prescribed genus having many rational points. The shape of ∆(f) might
look like figure 2.1. Note that the left side of this polygon consists of γ
distinct line segments, each containing two lattice points.

Figure 2.1. A typical Newton polygon arising from Lemma 2.2
with γ = 4. The indicated lattice points are the points (ℓi, i) and (mi, i).
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Proof. The edges of ∆ = ∆(f) correspond precisely to the one-dimensional
torus invariant divisors of S(∆). The points above 0 of π are precisely the in-
tersections of C with the torus invariant divisors corresponding to the edges
on the left side of ∆. We consider S(∆) as sitting in P#(∆∩Z2)−1 via the
map ϕ as described above. Denote by Xi,j the coordinates on P#(∆∩Z2)−1,
where (i, j) ∈ ∆ ∩ Z2.

Fix such an edge τ on the left side of ∆ and note that it contains exactly
two lattice points, say (ℓj , j) and (ℓj+1, j + 1). Let D be the corresponding
torus invariant divisor on S(∆). Then D is defined by taking Xi,j = 0 for
(i, j) /∈ τ . Thus, on D, C is defined by the hyperplane section

aXℓj ,j + bXℓj+1,j+1 = 0

for certain a, b ∈ k×. Hence C contains exactly one k-rational point on
D. Moreover, this point is not invariant under the torus action, since both
a, b ̸= 0. Since there are γ such edges on the left hand side of ∆, we conclude
that π−1(0) consists of γ distinct k-rational points. The fact that these are
all non-singular follows from the fact that π has degree γ. □

3. Poonen’s theorem
We recall here a theorem by Poonen on squarefree values of multivari-

ate polynomials over Fq[t]. Fix a prime power q. For a in Fq[t] define
|a| = #(Fq[t]/(a)) = qdeg a. For A a subset of Fq[t]n and positive integers
d1, . . . , dn define

A(d1, . . . , dn) = {(f1, . . . , fn) ∈ A | deg fi ≤ di},
A(d1, . . . , dn)′ = {(f1, . . . , fn) ∈ A | deg fi = di}.

In particular, Fq[t]n(d1, . . . , dn) consists of all elements (f1, . . . , fn) ∈ Fq[t]n
with deg fi ≤ di. We define the density of A to be

µ(A) = lim
d1,...,dn→∞

#A(d1, . . . , dn)
#Fq[t]n(d1, . . . , dn) = lim

d1,...,dn→∞

#A(d1, . . . , dn)
q
∑

i
(di+1)

,

if the limit exists. Here the limit means that for every ε > 0 there exists an
M such that if d1, . . . , dn ≥ M , then∣∣∣∣∣ #A(d1, . . . , dn)

#Fq[t]n(d1, . . . , dn) − µ(A)
∣∣∣∣∣ ≤ ε.

Then Poonen’s theorem states the following.

Theorem 3.1 ([15]). Let F ∈ Fq[t][x1, . . . , xn] be a polynomial which is
squarefree when considered in Fq(t)[x1, . . . , xn]. Let

A = {a ∈ Fq[t]n | F (a) is squarefree}.
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Then µ(A) exists and is equal to
∏

p(1 − cp/|p|2n) where the product is over
all non-zero primes p of Fq[t] and cp is the number of solutions of F (x) = 0
in Fq[t]/(p2). Moreover, µ(A) > 0 if and only if cp < |p|2n for all primes p.

This result implies the following for A(d1, . . . , dn)′.

Corollary 3.2. Let F ∈ Fq[t][x1, . . . , xn] be a polynomial which is square-
free when considered in Fq(t)[x1, . . . , xn]. Let

A = {a ∈ Fq[t]n | F (a) is squarefree}.

Then

lim
di→∞

#A(d1, . . . , dn)′

q
∑

i
di(q − 1)n

= µ(A).

Proof. The inclusion-exclusion principle gives that

#A(d1, . . . , dn)′

= #A(d1, . . . , dn) − #A(d1 − 1, d2, . . . , dn) − #A(d1, d2 − 1, d3, . . . , dn)
− · · · + #A(d1 − 1, d2 − 1, d3, . . . , dn) + · · · ± #A(d1 − 1, . . . , dn − 1).

Dividing by q
∑

i
di(q − 1)n and taking the limit di → ∞ gives the desired

statement. □

4. Constructing curves with many points
In this section we prove Theorem 1.1. Let γ ≥ 2 be the given gonality

and let q be an odd prime power. Let g be a sufficiently large integer. We
will construct a non-singular curve C over Fq of gonality γ and of genus g
with γ(q+1) rational points. The proof proceeds along several steps, which
we first outline.

(1) Construct a family of polynomials in Fq[t, y] among which we look
for a suitable defining equation.

(2) Use Poonen’s theorem to a certain discriminant polynomial. This
allows us to ensure that the curve is non-singular above A1(Fq) \
A1(Fq).

(3) Construct a good candidate Newton polygon for the polynomial
having a prescribed number of interior lattice points. This will give
us control over the genus as well as the points above ∞ ∈ P1.

(4) Construct the desired curve using the previous steps.
(5) Check that the curve satisfies all required conditions: it is geometri-

cally integral, non-singular, and has genus g, gonality γ and γ(q+1)
Fq-rational points.
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On A1 ×P1 write t for the coordinate on A1 and y, z for the coordinates
on P1. We will look for a curve which is defined in A1 × P1 by an equation

(4.1) f(t, y, z) =
γ∑

i=0
fi(t)yizγ−i = 0,

where fi ∈ Fq[t]. We will also write f ∈ Fq[t, y] for the dehomogenized
polynomial f(t, y, 1). Let ∆ be the convex hull of ∆(f) together with (0, 0)
and (0, γ). We let C be the curve defined by f = 0 inside the surface
S(∆) = S. Let us assume that f0, fγ ̸= 0. Then projection onto t gives a
degree γ morphism π : C → P1, which extends to a morphism S → P1.
Inside S, there is naturally a copy of A1 × P1 obtained as the union of
the torus and all torus invariant divisors except those corresponding to
edges on the right hand side of ∆. Depending on the fi, C might not be
geometrically integral. If C is geometrically integral however, we denote by
C̃ the non-singular model of C. The map π naturally induces a degree γ
map C̃ → P1, which we also denote by π.

Step 1. We first ensure that C̃ has γ distinct non-singular Fq-rational
points above every point of A1(Fq). To do this, we will require the fi to be
of a specific form so that we can apply Lemma 2.2.

We take integers 0 = k0 ≤ k1 < k2 < · · · < kγ , e.g. ki = i − 1 for i > 0
will do, and put ℓj =

∑j
i=0 ki and L(ℓ) =

∑γ−1
j=1 ℓj . Define α = tq − t =∏

a∈Fq
(t− a) ∈ Fq[t]. We would like to take every fi of the form

α(t)ℓi(1 + α(t)gi(t)),

for some polynomials gi ∈ Fq[t]. Indeed, in that case we could apply
Lemma 2.2 above every point of A1(Fq). However, to make sure that f
is absolutely irreducible we require something more. We fix an irreducible
polynomial β ∈ Fq[t] of degree 2 (any degree > 1 will do). Then define

fi = α(t)ℓiβ(t)δi(1 + α(t)β(t)δ′
igi(t)),

where δi = 1 if i < γ and 0 if i = γ, and δ′
i = 1 if i = 0, γ and 0 if i ̸= 0, γ.

Note that then f is automatically a ∆-polynomial, and also an Eisenstein
polynomial with respect to β. We will want to pick the gi in such a way
that the resulting curve C̃ has all of the desired properties.

Step 2. To ensure that the curve is non-singular at all points except above
A1(Fq), we make sure that a certain discriminant polynomial is squarefree.
The following lemma tells us that the generic discriminant polynomial is
squarefree. A proof can be found at [2], but let us include it for completeness
sake. (See also [9, p. 15] for a more general result in characteristic zero.)
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Lemma 4.1. Let k be a field of characteristic not 2 and γ a positive integer
and let

D = disc
Y

( γ∑
i=0

xiY
i

)
∈ k[x0, . . . , xγ ]

be the generic discriminant polynomial over k. Then D is irreducible in
k[x0, . . . , xγ ], so in particular it is squarefree.

Proof. Consider the generic polynomial p = Y γ −s1Y
γ−1 + · · · +(−1)γsγ ∈

k[s1, . . . , sγ ][Y ], whose coefficients are the elementary symmetric polyno-
mials si in the roots r1, . . . , rγ of p. Recall that the extension

k(r1, . . . , rγ)/k(s1, . . . , sγ)

is Galois with Galois group the symmetric group Sγ .
It is enough to prove that the discriminant polynomial

D(s1, . . . , sγ) =
∏
i<j

(ri − rj)2

is irreducible in k[s1, . . . , sγ ]. So assume towards a contradiction that D
factors as D1D2, for some non-constant polynomials D1, D2 ∈ k[s1, . . . , sγ ].
By unique factorization there exist for every pair i < j a power εi,j ∈
{0, 1, 2} such that D1 = c

∏
i<j(ri − rj)εi,j , for some c ∈ k×. By Galois

theory, one sees that εi,j ≤ εi′,j′ for every two pairs i < j, i′ < j′. Hence we
conclude that

D1 = c
∏
i<j

(ri − rj).

But now, since k has characteristic not 2, switching r1 and r2 and keeping
the other ri fixed changes the sign of D1, implying that D1 does not have
coefficients in k[s1, . . . , sγ ]. This is a contradiction, and we conclude that
D is irreducible. □

As a side remark, note that the above proof also shows that in character-
istic 2, the generic discriminant polynomial is the square of an irreducible
polynomial.

Define

H =
γ∑

i=0
α(t)ℓiβ(t)δi(1 + α(t)β(t)δ′

ixi)Y i ∈ Fq[t][x0, . . . , xγ , Y ],

and
F1 = disc

Y
(H(x, Y )) ∈ Fq[t][x0, . . . , xγ ].

Note that this is simply the discriminant of f with respect to y, where we
consider the gi as variables.

Lemma 4.2. We have that α2L(ℓ) · βγ−1 divides F1 in Fq[t][x0, . . . , xγ ].
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Proof. Let us first prove that α2L(ℓ) divides F1. Fix a degree one prime p
of Fq[t], i.e. a divisor of α, and denote by vp the valuation corresponding
to p on Fq(t). We work in some fixed algebraic closure Fq(t, x0, . . . , xγ) of
Fq(t, x0, . . . , xγ) and denote by vp also any extension of vp to this field,
where we require that vp(xi) ≥ 0 for any i. Now let r1, . . . , rγ be the roots
of the polynomial H in Fq(t, x0, . . . , xγ). By looking at the slopes of the
Newton polygon of this polynomial with respect to the valuation vp, see
e.g. [12, p. 97], we may assume, after reordering, that vp(ri) = −ki. Hence
we have that

vp(F1) = vp

f2γ−2
γ

∏
i<j

(ri − rj)2

 = vp(f2γ−2
γ ) −

∑
i<j

kj = 2L(ℓ),

and we conclude that α2L(ℓ) divides F1. In fact, our argument shows that
this is the exact power of α dividing F1.

We use a similar argument with respect to β to show that βγ−1 divides
F1. Let p be a linear factor of β in Fq[t] and let vp be an extension of
the valuation corresponding to p on FFq(t) to the field Fq(t, x0, . . . , xγ),
with vp(xi) ≥ 0 for any i. Let r be any root of H in this field. Since H
is an Eisenstein polynomial with respect to β, we have by [12, p. 66] that
vp(r) = 1/γ. Then F1 = ±fγ−2

γ N((∂Y H)(r)), where N denotes the norm
map from Fq(t, x0, . . . , xγ) to Fq(t, x0, . . . , xγ). Now we have that

∂Y H(r) = γfγr
γ−1 + (γ − 1)fγ−1r

γ−2 + · · · + f1,

and the terms here satisfy vp(ifir
i−1) ≥ (γ + i− 1)/γ for i = 1, . . . , γ − 1.

Therefore, we certainly have that βγ−1 will divide F1. □

Now define

F (x0, . . . , xγ) = F1(x0, . . . , xγ)
α(t)2L(ℓ)β(t)γ−1 ∈ Fq[t][x0, . . . , xγ ].

We will apply Poonen’s theorem to this polynomial. The highest degree
part of F1 is equal to

disc
Y

( γ∑
i=0

α(t)ℓi+1β(t)δi+δ′
ixiY

i

)
.

By Lemma 4.1 the generic discriminant polynomial discY (
∑γ

i=0 xiY
i) is

squarefree when considered in Fq(t)[x0, . . . , xγ ], and so we conclude the
same about F1. Hence, also F is squarefree in Fq(t)[x0, . . . , xγ ]. Define

A = {(gi)i ∈ Fq[t]γ+1 | F ((gi)i) squarefree}.

Then Poonen’s theorem 3.1 states that the density µ(A) exists, and is equal
to the product of (1 − cp/|p|2γ+2) over all non-zero primes p of Fq[t], where
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cp is the number of zeroes of F over Fq[t]/(p2). We need to show that
µ(A) > 0.

Lemma 4.3. We have that µ(A) > 0.

Proof. We have to prove that cp < |p|2γ+2 for all primes p of Fq[t].
If p is a prime of degree 1, fix any values of gi and let r1, . . . , rγ be

the roots of f = 0 in Fq(t, y). Let vp be an extension of the valuation
corresponding to p to this field with vp(y) ≥ 0 (note that this is not the
same valuation vp as above). Then by a similar argument as above, we have

vp(F (g0, . . . , gγ)) = vp(F1(g0, . . . , gγ)) − 2L(ℓ) = 0,

so that F cannot even have any zeroes modulo p. Hence cp = 0. For p = β,
take g0, . . . , gγ such that vβ(f1) = 1. Then reasoning as above, one obtains
that

vβ(F (g0, . . . , gγ)) = vβ(F1(g0, . . . , gγ)) − (γ − 1) =
{

0 if char(Fq) ∤ γ
1 if char(Fq) | γ.

Hence, we see that F1(g0, . . . , gγ) is non-zero modulo β2 and so cβ < |β|2γ+2.
If p is another prime, not of degree 1 or equal to β, then α and β are both
invertible modulo p. Then F mod p is obtained from the generic discrimi-
nant polynomial discY (

∑γ
i=0 xiY

i) mod p by linear substitution in the xi.
Since there exist squarefree polynomials of every degree over every finite
field, we see that cp < |p|2γ+2. We conclude that µ(A) > 0, as desired. □

Step 3. We will want to take (gi)i ∈ A(d0, . . . , dγ)′ for suitable integers di

(depending on the genus g). Note that these di also determine the Newton
polygon of f . In particular, they also determine ∆, which we recall is the
convex hull of ∆(f) together with (0, 0) and (0, γ). So we now look for a
good candidate for ∆, which will give us control over the arithmetic genus
of the curve and moreover ensures that the curve is non-singular above ∞.

The choice of ∆ will depend on g mod γ − 1. So fix some residue class
g ≡ n mod γ − 1 of genera with n = 0, . . . , γ − 2 and put m = n + qL(ℓ).
Take k′

2 > γ − 3 such that

k′
2 ≡

γ−3∑
j=1

j2 −m mod γ − 1.

Define k′
i = γ − i for i = 3, . . . , γ and put k′

1 = k′
2 + 1. Note that

k′
1 > k′

2 > · · · > k′
γ ,

∑
j

k′
j ≥ 0, and

γ−1∑
j=1

(γ − j)k′
j ≡ m mod γ − 1.
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Define ℓ′j =
∑j

i=1 k
′
i, ℓ′0 = 0 and for r ≥ 0 a positive integer consider the

lattice polygon
∆r = conv{(0, 0), (0, γ), (r, γ), (r+ ℓ′1, γ− 1), (r+ ℓ′2, γ− 2), . . . , (r+ ℓ′γ , 0)},
see Figure 4.1. Our choice of integers k′

j guarantees that the number of
interior lattice points of ∆r is congruent to m modulo γ − 1. Moreover,
∆r+1 has exactly γ − 1 interior lattice points more than ∆r. Thus, for
every sufficiently large integer s there is some r such that this polygon ∆r

has exactly n + qL(ℓ) + s(γ − 1) interior lattice points. Note also that by
our choice of k′

i, the right hand side of ∆ consists of γ line segments, each
containing exactly two lattice points.

Figure 4.1. The typical shape for the lattice polygons ∆r

constructed above (here γ = 4). The polygon ∆r+1 is pic-
tured in grey.

Step 4. We now construct the desired polynomial f . By Corollary 3.2 there
exists some M such that if d0, . . . , dγ ≥ M then

A(d0, . . . , dγ)′ ̸= ∅.
Let g be the desired genus for our curve and assume that g ≡ n mod γ− 1.
If g is sufficiently large, then there exists some positive integer r such that
the polygon ∆ = ∆r constructed in the previous step has exactly g+ qL(ℓ)
interior lattice points. We will construct f in such a way that it will be a
∆-polynomial, see Figure 4.2 for the relation between ∆ and ∆(f). Recall
that deg β = 2 and define for every i ∈ {0, . . . , γ}

di = r + ℓ′γ−i − q(ℓi + 1) − 2(δi + δ′
i).

This will be the desired degree of gi. If g is sufficiently large, then so is r
and hence di ≥ M for all i. Therefore, there exists some element

(g0, . . . , gγ) ∈ A(d0, . . . , dγ)′.

Let f be the polynomial as constructed above from the (gi)i, namely we
put

fi = α(t)ℓiβ(t)δi(1 + α(t)β(t)δ′
igi(t)) ∈ Fq[t],

and define f =
∑γ

i=0 fi(t)yi ∈ Fq[t, y]. Let C = V (f) inside S = S(∆). We
claim that this curve is as desired. Namely, f is a ∆-polynomial which is
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absolutely irreducible and the non-singular model of C is of genus g with
γ(q + 1) Fq-rational points and gonality γ.

∆ ∆(f)

Figure 4.2. Typical lattice polygons ∆ = ∆r and ∆(f)
in the construction. Note that the right hand sides of both
polygons are the same.

Step 5. We first prove that f is absolutely irreducible and that C is smooth
above A1(Fq) \ A1(Fq). We need a general lemma.

Lemma 4.4. Let k be a field and let f =
∑γ

i=0 fi(t)yizγ−i ∈ k[t, y, z] be a
polynomial over k. Let C = V (f) be the curve determined by f = 0 inside
A1 × P1, where the coordinate on A1 is t and the coordinates on P1 are
y, z. If C has a singularity above a non-zero prime p of k[t] then p2 divides
discy f(t, y, 1).

Proof. By invariance of the discriminant under translations and taking re-
ciprocals we can assume that C has a singularity at t = a, y = 0, z = 1,
where p(a) = 0. Here we have to move to some algebraic closure of k but
this is not a problem. Now, being a singularity means that

f(a, 0) = f0(a) = 0, (∂tf)(a, 0) = f ′
0(a) = 0, (∂yf)(a, 0) = f1(a) = 0.

By computing the discriminant from the Sylvester matrix of f, ∂yf , one sees
that (t− a)2 will divide discy f(t, y). Since the original f is defined over k,
this situation occurs for any root a of p and so p2 will divide discy f(t, y). □

The condition of having squarefree discriminant at a prime p is stronger
than being non-singular. Geometrically, having squarefree discriminant
means that all ramification types of the map C → A1 are of the form
(2, 1, . . . , 1) or (1, . . . , 1), by [14, Thm. III.2.6].

Lemma 4.5. The polynomial f is absolutely irreducible and C has no
singularities above P1(Fq) \ A1(Fq).

Proof. Suppose that f = a·b for certain a, b∈Fq[t, y]. Write a=
∑λ

i=0 ai(t)yi,
b =

∑γ−λ
i=0 bi(t)yi where λ is the y-degree of a, and ai, bi ∈ Fq[t]. Let p be a

linear factor of β in Fq[t] and denote by vp the induced valuation on Fq[t].
Then we have that

1 = vp(f0) = vp(a0) + vp(b0), 0 = vp(fγ) = vp(aλ) + vp(bγ−λ).
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So without loss of generality, vp(aλ) = vp(bγ−λ) = vp(b0) = 0 and vp(a0) =
1. Now take λ′ ≥ 0 such that vp(aλ′) = 0 but vp(ai) ≥ 1 for i = 0, . . . , λ′ −1.
Then

vp(fλ′) = vp(b0aλ′ + b1aλ′−1 + . . .) = 0

and by construction of f , λ′ = γ and hence also λ = γ. This implies that
b = b0 ∈ Fq[t]. It is clear that b0 is coprime to both α and β, because α
and β do not divide f . But then b2γ−2

0 would divide discy f(t, y), which
contradicts the fact that (gi)i ∈ A. So we conclude that f is absolutely
irreducible.

That C has no singularities above primes p not dividing α or β follows
directly from Lemma 4.4 and the fact that (gi)i ∈ A. That the same holds
above β follows from the fact that f is an Eisenstein polynomial with respect
to β. Finally, by an argument similar to Lemma 2.2 but using the right hand
side of ∆, we see that the fibre of C above ∞ consists of γ non-singular
Fq-rational points. □

We have just proven that f is absolutely irreducible, so denote by C̃
the non-singular model of C. As for the genus of C̃, and the points above
P1(Fq) we have the following.

Lemma 4.6. Every fibre of π : C̃ → P1 above P1(Fq) consists of γ distinct
non-singular Fq-rational points. Moreover, the genus of C̃ is equal to

g(C̃) = #(∆(1) ∩ Z2) − qL(ℓ) = g.

Proof. The first statement for fibres above A1(Fq) follows directly from
Lemma 2.2 and our construction of f . Note that the right hand side of
∆(f) consists of γ line segments, each containing two lattice points. Above
∞, a similar argument as Lemma 2.2 using the right hand side of ∆(f)
then gives that also π−1(∞) consists of γ non-singular Fq-rational points.

By the previous lemma, C has no singularities in S, except above points
of A1(Fq). The curve C has arithmetic genus #(∆(1) ∩Z2). Recall that the
torus-invariant points of S correspond to the lattice points on the boundary
of ∆, so let p ∈ S be the torus-invariant point corresponding to (0, γ) ∈ ∆.
By looking at the fans of S and S′ = S(∆(f)), see Figure 4.2, one sees that
there is a toric morphism ψ : S′ → S which is an isomorphism away from
p. The strict transform of C under this morphism is the curve C ′ defined
by f , but in the surface S′, and ψ restricts to a morphism C ′ → C which
is an isomorphism away from p. Since π(p) = 0, the curve C is isomorphic
to C ′ above P1 \ {0}. By Lemma 2.2, the curve C ′ is non-singular above 0,
and by comparing Newton polygons, the arithmetic genus of C ′ is equal to

#(∆(f)(1) ∩ Z2) = ga(C) − L(ℓ).
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The same reasoning holds above every other point of A1(Fq), by our con-
struction of the polynomial f . After resolving the singularities above every
a ∈ A1(Fq), we end up with the curve C̃, since these were the only singu-
larities of C. Hence we conclude that this curve has genus

#(∆(f)(1) ∩ Z2) − qL(ℓ) = g. □

This lemma implies immediately that C̃ has γ(q+ 1) Fq-rational points.
Finally, the fact that C̃ has gonality γ follows directly from the gonality
bound 1.1 since C̃ has γ(q+1) Fq-rational points and we have an Fq-rational
map C̃ → P1 of degree γ.
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[10] A. G. Hovanskĭı, “Newton polyhedra, and the genus of complete intersections”, Funkts.
Anal. Prilozh. 12 (1978), no. 1, p. 51-61.

[11] Y. Ihara, “Some remarks on the number of rational points of algebratic curves over finite
fields”, J. Fac. Sci., Univ. Tokyo, Sect. I A 28 (1981), p. 721-724.

[12] N. Koblitz, p-adic Numbers, p-adic Analysis and Zeta functions, Graduate Texts in Math-
ematics, vol. 58, Springer, 1977.

[13] A. Kresch, J. L. Wetherell & M. E. Zieve, “Curves of every genus with many points, I:
Abelian and toric families”, J. Algebra 250 (2002), no. 1, p. 353-370.

[14] J. Neukirch, Algebraic number theory, Grundlehren der Mathematischen Wissenschaften,
vol. 322, Springer, 1999.

[15] B. Poonen, “Squarefree values of multivariable polynomials”, Duke Math. J. 118 (2003),
no. 2, p. 353-373.

https://mathoverflow.net/q/221771
https://mathoverflow.net/q/221771
https://doi.org/10.1080/10586458.2021.1926015
https://doi.org/10.1080/10586458.2021.1926015


Curves of fixed gonality with many rational points 149

[16] S. Vladut & V. G. Drinfeld, “Number of points of an algebraic curve”, Funct. Anal. Appl.
17 (1983), no. 1, p. 53-54.

Floris Vermeulen
KU Leuven, Department of Mathematics,
Celestijnenlaan 200B,
3001 Leuven, Belgium
E-mail: floris.vermeulen@kuleuven.be
URL: https://sites.google.com/view/floris-vermeulen/homepage

mailto:floris.vermeulen@kuleuven.be
https://sites.google.com/view/floris-vermeulen/homepage

	1. Introduction
	2. Curves on toric surfaces
	3. Poonen's theorem
	4. Constructing curves with many points
	Step 1.
	Step 2.
	Step 3.
	Step 4.
	Step 5.
	Acknowledgments

	References

