Noah LEBOWITZ-LOCKARD

The distribution of numbers with many ordered factorizations

<http://jtnb.centre-mersenne.org/item?id=JTNB_2021__33_2_583_0>
The distribution of numbers with many ordered factorizations

par Noah LEBOWITZ-LOCKARD

Résumé. Soit \(g(n) \) le nombre de factorisations de \(n \) en produit ordonné de facteurs plus grands que 1. On trouve des bornes précises pour les moments positifs de \(g \). On utilise ces résultats pour estimer le nombre de \(n \leq x \) tels que \(g(n) \geq x^\alpha \) pour tous les \(\alpha \) positifs. En outre, soient \(G(n) \) et \(g_P(n) \) les nombres de factorisations de \(n \) en produit ordonné de facteurs distincts plus grands que 1 et en produit ordonné de facteurs premiers respectivement. On donne des bornes inférieures pour les moments positifs de \(G \) et \(g_P \).

Abstract. Let \(g(n) \) be the number of ordered factorizations of \(n \) into numbers larger than 1. We find precise bounds on the positive moments of \(g \). We use these results to estimate the number of \(n \leq x \) satisfying \(g(n) \geq x^\alpha \) for all positive \(\alpha \). In addition, let \(G(n) \) and \(g_P(n) \) be the number of ordered factorizations of \(n \) into distinct numbers larger than 1 and primes, respectively. We also bound the positive moments of \(G \) and \(g_P \) from below.

1. Introduction

Let \(g(n) \) be the number of ordered factorizations of \(n \) into numbers larger than 1. For example, \(g(18) = 8 \) because the ordered factorizations of 18 are

\[18, \ 9 \cdot 2, \ 2 \cdot 9, \ 6 \cdot 3, \ 3 \cdot 6, \ 3 \cdot 3 \cdot 2, \ 3 \cdot 2 \cdot 3, \ 2 \cdot 3 \cdot 3. \]

In 1931, Kalmár [11] found an asymptotic estimate for the sum of \(g(n) \) for \(n \leq x \), namely

\[\sum_{n \leq x} g(n) \sim -\frac{1}{\rho \zeta'(\rho)} x^\rho, \]

where \(\zeta \) is the Riemann zeta function and \(s = \rho \approx 1.73 \) is the unique solution to \(\zeta(s) = 2 \) in \((1, \infty) \). Kalmár found the first error term for this equation, which Ikehara [9] subsequently improved. Most recently, Hwang [8] proved that

\[\sum_{n \leq x} g(n) = -\frac{1}{\rho \zeta'(\rho)} x^\rho + O\left(x^\rho \exp\left(-c (\log_2 x)^{(3/2)-\epsilon}\right)\right) \]
for all positive ϵ where $c = c(\epsilon)$ is a positive constant. (Throughout this paper, \log_k refers to the kth iterate of the logarithm. In addition, all error terms apply as $x \to \infty$.)

There have also been numerous results on the maximal order of $g(n)$. Clearly, $g(n) \ll n^{\rho}$ for all n. In 1936, Hille [7] proved that for any $\epsilon > 0$, there exist infinitely many n for which $g(n) > n^{\rho-\epsilon}$. Multiple people [2, 3, 12] refined Hille’s bound. The best known result on the maximal order of $g(n)$ comes from Deléglise, Hernane, and Nicolas [2, Théorème 3], namely that there exist positive constants C_1 and C_2 such that

$$x^\rho \exp\left(-C_1 \frac{(\log x)^{1/\rho}}{\log_2 x}\right) \leq \max_{n \leq x} g(n) \leq x^\rho \exp\left(-C_2 \frac{(\log x)^{1/\rho}}{\log_2 x}\right)$$

for sufficiently large x. (The authors conjecture that there exists a positive constant C for which

$$\max_{n \leq x} g(n) = x^\rho \exp\left(-(C + o(1)) \frac{(\log x)^{1/\rho}}{\log_2 x}\right).$$

For such a value of C, we would have $C_2 \leq C \leq C_1$.)

From here on, all instances of C_1 and C_2 refer to any pair of constants satisfying

$$x^\rho \exp\left(-C_1 \frac{(\log x)^{1/\rho}}{\log_2 x}\right) \leq \max_{n \leq x} g(n) \leq x^\rho \exp\left(-C_2 \frac{(\log x)^{1/\rho}}{\log_2 x}\right)$$

for sufficiently large x. In particular, they have the same values in Theorems 1.2 and 1.3. In Section 8, we introduce C_3 and C_4, which also have fixed values. If a result refers to a constant C, the value of C is specific to that result. Beginning in the next section, we introduce a series of constants c_1, c_2, \ldots. The only constraint on a given c_i is that it be large with respect to c_{i-1} and β. Note that the c_i’s are only relevant when $\beta \leq 1/\rho$.

Throughout this paper, $o(1)$ means that a function goes to 0 as $x \to \infty$, at a rate depending on all other parameters. The rate at which this occurs is dependent upon β unless otherwise stated. The constant multiple implied by the \ll symbol also depends on β.

It is easy to bound the negative moments of g. If $\beta \geq 0$, then

$$\sum_{n \leq x} g(n)^{-\beta} = x^{1 + o(1)}.$$

The sum is at most x because $g(n)^{-\beta} \leq 1$ for all n and $\gg x / \log x$ because $g(p)^{-\beta} = 1$ for all prime p. In fact, Just and the author [10] recently proved that

$$\sum_{n \leq x} g(n)^{-\beta}, \quad \sum_{n \leq x} \tilde{g}(n)^{-\beta}, \quad \sum_{n \leq x} G(n)^{-\beta}$$
are all
\[\frac{x}{\log x} \exp \left((1 + o(1))(1 + \beta)(\log 2)^{\beta/(1+\beta)}(\log_2 x)^{1/(1+\beta)} \right), \]

where \(\tilde{g}(n) \) (resp. \(G(n) \)) is the number of ordered factorizations of \(n \) into coprime (resp. distinct) parts larger than 1. In addition, we bounded the positive moments of \(\tilde{g} \) [10, Theorem 1.8]. If \(\beta \in (0, 1) \), then
\[
\sum_{n \leq x} \tilde{g}(n)^\beta = x \exp \left((1 + o(1)) \frac{1 - \beta}{(\log 2)^{\beta/(1-\beta)}}(\log_2 x)^{1/(1-\beta)} \right).
\]

(For the corresponding sum with \(\beta \geq 1 \), see [10, Theorems 1.2, 1.7].) Using a similar proof, we obtain a lower bound for the corresponding sum of \(g(n)^\beta \) which is larger than the bound we obtain from the sum of \(\tilde{g}(n)^\beta \). We also bound this quantity from above.

Theorem 1.1. If \(\beta \in (0, 1/\rho) \), then
\[
\sum_{n \leq x} g(n)^\beta \geq x \exp((C_g + o(1))(\log_2 x)^{1/(1-\beta)}),
\]

with
\[
C_g = \frac{1 - \beta}{(\log 2)^{\beta/(1-\beta)}} \exp \left(\frac{\beta}{(\log 2)(1 - \beta)} \sum_p \frac{1}{ep^{1/\beta} - 1} \right).
\]

In addition,
\[
\sum_{n \leq x} g(n)^\beta = x \exp((\log x)^{o(1)}).
\]

For the larger moments of \(g \), we obtain notably larger bounds. In particular, there is a significant increase at \(\beta = 1/\rho \). For all \(\beta < 1/\rho \), the exponent of \(\log x \) in the exponent is 0. However, at \(\beta = 1/\rho \), the exponent increases to \(1/\rho \).

Theorem 1.2. If \(\beta \in [1/\rho, 1) \), then
\[
x^{\rho \beta} \exp \left(C_2(1 - \beta) \frac{\log x}{\log_2 x} \right) \leq \sum_{n \leq x} g(n)^\beta \\
\leq x^{\rho \beta} \exp \left((1 + o(1))2\left(\frac{2}{\log 2} \right)^{1/\rho}(\log x)^{1/\rho}\log_2 x \right)
\]

for sufficiently large \(x \).

Theorem 1.3. If \(\beta > 1 \), then
\[
x^{\rho \beta} \exp \left(-C_1 \beta \frac{\log x}{\log_2 x} \right) \ll \sum_{n \leq x} g(n)^\beta \ll x^{\rho \beta} \exp \left(-C_2(\beta - 1) \frac{\log x}{\log_2 x} \right).
\]
Asymptotics for the moments and maximal order of the unordered factorization function are already known [1, 10, 16].

We also show that the $\beta = 1/\rho$ case of Theorem 1.2 implies the following result about the distribution of large values of $g(n)$.

Theorem 1.4. Fix $\epsilon > 0$. As $x \to \infty$, we have

$$\#\{n \leq x : g(n) \geq x^\alpha\} = x^{1-(\alpha/\rho)+o(1)}$$

uniformly for all $\alpha \in [0, \rho - \epsilon]$.

Let $G(n)$ and $gP(n)$ be the number of ordered factorizations of n into distinct parts greater than 1 and prime parts, respectively. As with $g(n)$, asymptotic formulas for the sum and negative moments for these functions are already known [5, 10, 14]. We find lower bounds for the positive moments of these functions using techniques similar to the ones we used for $g(n)$.

Acknowledgments. The author wishes to thank Gérald Tenenbaum for his assistance with the smooth number computations.

2. Preliminary results

Let c_1 be a large constant. For a given number n, let A and B be the $(c_1(\log x)^\beta)$-smooth and $(c_1(\log x)^\beta)$-rough parts of n, respectively. In other words, $n = AB$, where every prime factor of A is at most $c_1(\log x)^\beta$ and every prime factor of B is greater than $c_1(\log x)^\beta$. We may write

$$\sum_{n \leq x} g(n)^\beta = \sum_{A \leq x} \sum_{B \leq x/A} g(AB)^\beta.$$

Let $\Omega(n)$ be the number of (not necessarily distinct) prime factors of n. For a given M, let $\Omega > M(n)$ be the number of prime factors of n which are $> M$. Before proving our main theorems, we must write a few results.

Lemma 2.1 ([12, Lemma 2.5]). For any two integers n_1 and n_2, we have

$$g(n_1 n_2) \leq g(n_1) \cdot (2\Omega(n_1 n_2))^{\Omega(n_2)}.$$

Because $A \leq x$, we have $\Omega(A) \leq (\log A)/(\log 2)$. Because $B \leq x$ is $(c_1(\log x)^\beta)$-rough, we have

$$\Omega(B) \leq \frac{\log B}{\log(c_1(\log x)^\beta)} \leq \frac{1}{\beta \log_2 x} \log x.$$

Corollary 2.2. For all $n \leq x$, we have

$$g(n) \leq g(A) \cdot \left(\frac{2}{\log_2 x}\right)^{\Omega(B)}.$$
In the proof of [15, Lemma 8], Pollack proves the following result, but does not explicitly state it.

Lemma 2.3. For all \(y \leq x \), we have
\[
\sum_{n \leq T} y^{\Omega > 2y(n)} \leq T \exp(2y \log x),
\]
uniformly for \(T \in [1, x] \).

We close this section with a theorem about the distribution of smooth numbers. Let \(\Psi(x, y) \) be the number of \(y \)-smooth numbers up to \(x \).

Theorem 2.4 ([18, Theorem III.5.2]). Fix \(x \geq y \geq 2 \). We have
\[
\Psi(x, y) = \exp \left((1 + O \left(\frac{1}{\log x} + \frac{1}{\log y} \right)) Z \right),
\]
with
\[
Z = \frac{\log x}{\log y} \log \left(1 + \frac{y}{\log x} \right) + \frac{y}{\log y} \log \left(1 + \frac{\log x}{y} \right).
\]

3. Large values of \(\beta \)

We establish precise bounds on the \((1/\rho)\)-th moment of \(g(n) \), which we then use to obtain bounds on the \(\beta \)-th moment of \(g \) for all \(\beta > 1/\rho \).

Theorem 3.1. We have
\[
\sum_{n \leq x} g(n)^{1/\rho} \leq x \exp \left((1 + o(1))2 \left(\frac{2}{\log 2} \right)^{1/\rho} \left(\log x \right)^{1/\rho} \log 2 x \right).
\]

Proof. We rewrite \(g(n) \) as \(g(AB) \) and apply Corollary 2.2:
\[
\sum_{n \leq x} g(n)^{1/\rho} = \sum_{A \leq x} \sum_{B \leq x/A} g(AB)^{1/\rho}
\]
\[
\leq \sum_{A \leq x} g(A)^{1/\rho} \sum_{B \leq x/A} \left(\frac{2}{\log 2} \log x \right)^{(1/\rho)\Omega(B)}.
\]
By definition, \(\Omega(B) = \Omega_{>c_1(\log x)^{1/\rho}}(n) \). Lemma 2.3 gives us
\[
\sum_{B \leq x/A} \left(\frac{2}{\log 2} \log x \right)^{(1/\rho)\Omega_{>c_1(\log x)^{1/\rho}}(n)} \leq \frac{x}{A} \exp \left(2 \left(\frac{2}{\log 2} \right)^{1/\rho} \left(\log x \right)^{1/\rho} \log 2 x \right),
\]
which implies that
\[
\sum_{n \leq x} g(n)^{1/\rho} \leq x \exp \left(2 \left(\frac{2}{\log 2} \right)^{1/\rho} \log x \right) \left(\log x \right) \log_2 x \sum_{A \leq x} \frac{g(A)^{1/\rho}}{A}.
\]

Because \(g(A) \ll A^\rho \), we have \(g(A)^{1/\rho}/A \ll 1 \). Hence,
\[
\sum_{n \leq x} g(n)^{1/\rho} \leq x \exp \left(2 \left(\frac{2}{\log 2} \right)^{1/\rho} \log x \right) \Psi(x, c_1(\log x)^{1/\rho}).
\]

By Theorem 2.4,
\[
\Psi(x, c_1(\log x)^{1/\rho}) = \exp(O((\log x)^{1/\rho})),
\]
which implies that
\[
\sum_{n \leq x} g(n)^{1/\rho} \leq x \exp \left((1 + o(1))2 \left(\frac{2}{\log 2} \right)^{1/\rho} \log x \right). \quad \square
\]

While the following corollary applies to all \(\beta > 1/\rho \), it is only useful when \(\beta \leq 1 \) as well. Theorem 3.4 supersedes this result when \(\beta > 1 \).

Corollary 3.2. If \(\beta \geq 1/\rho \), then
\[
\sum_{n \leq x} g(n)^\beta \leq x^\rho \exp \left((1 + o(1))2 \left(\frac{2}{\log 2} \right)^{1/\rho} \log x \right).
\]

Proof. We have
\[
\sum_{n \leq x} g(n)^\beta \leq \left(\max_{n \leq x} g(n) \right)^{\beta - (1/\rho)} \sum_{n \leq x} g(n)^{1/\rho} \leq \left(x^\rho \exp \left(-C_2 \left(\frac{\log x}{\log_2 x} \right)^{1/\rho} \right) \right)^{\beta - (1/\rho)} \cdot x \exp \left((1 + o(1))2 \left(\frac{2}{\log 2} \right)^{1/\rho} \log x \right) \log_2 x \right) \]
\[
= x^\rho \exp \left((1 + o(1))2 \left(\frac{2}{\log 2} \right)^{1/\rho} \log x \right) \log_2 x \right). \quad \square
\]

We close this section with a few short proofs of our remaining bounds.
Theorem 3.3. For \(x\) sufficiently large, we have

\[
\sum_{n \leq x} g(n)^\beta \geq x^{\rho \beta} \exp \left(C_2 (1 - \beta) \frac{(\log x)^{1/\rho}}{\log_2 x} \right)
\]

for all \(\beta < 1\).

Proof. We have

\[
\sum_{n \leq x} g(n) \leq \left(\max_{n \leq x} g(n) \right)^{1-\beta} \sum_{n \leq x} g(n)^\beta.
\]

Therefore,

\[
\sum_{n \leq x} g(n)^\beta \geq \left(\max_{n \leq x} g(n) \right)^{(1-\beta)} \sum_{n \leq x} g(n)
\geq x^{\rho \beta} \exp \left(C_2 (1 - \beta) \frac{(\log x)^{1/\rho}}{\log_2 x} \right).
\]

Thus, though this theorem applies to all \(\beta \leq 1\), it is only useful when \(\beta \geq 1/\rho\), as we already know that the sum is at least \(\lfloor x \rfloor\).

Theorem 3.4. For \(x\) sufficiently large, we have

\[
x^{\rho \beta} \exp \left(-C_1 \beta \frac{(\log x)^{1/\rho}}{\log_2 x} \right) \leq \sum_{n \leq x} g(n)^\beta \leq x^{\rho \beta} \exp \left(-C_2 (\beta - 1) \frac{(\log x)^{1/\rho}}{\log_2 x} \right)
\]

for all \(\beta > 1\).

Proof. For the lower bound, we have

\[
\sum_{n \leq x} g(n)^\beta \geq \left(\max_{n \leq x} g(n) \right)^\beta \geq x^{\rho \beta} \exp \left(-C_1 \beta \frac{(\log x)^{1/\rho}}{\log_2 x} \right).
\]

In addition,

\[
\sum_{n \leq x} g(n)^\beta \leq \left(\max_{n \leq x} g(n) \right)^{\beta-1} \sum_{n \leq x} g(n) \leq x^{\rho \beta} \exp \left(-C_2 (\beta - 1) \frac{(\log x)^{1/\rho}}{\log_2 x} \right)
\]

gives us the upper bound.

From Theorem 3.1, we obtain Theorem 1.4.

Theorem 3.5. Fix \(\epsilon > 0\). As \(x \to \infty\),

\[
\# \{ n \leq x : g(n) \geq x^\alpha \} = x^{1-(\alpha/\rho) + o(1)}
\]

uniformly for all \(\alpha \in [0, \rho - \epsilon]\).
Proof. For a given α, define

$$S_\alpha = \{n \leq x : g(n) \geq x^\alpha\}.$$

By definition,

$$\sum_{n \in S_\alpha} g(n)^{1/\rho} \geq \sum_{n \in S_\alpha} x^{\alpha/\rho} = x^{\alpha/\rho} \cdot \#S_\alpha.$$

From Theorem 3.1 we obtain

$$\sum_{n \in S_\alpha} g(n)^{1/\rho} \leq \sum_{n \leq x} g(n)^{1/\rho} = x \exp \left((1 + o(1)) 2 \frac{1}{\rho} \left(\log x \right)^{1/\rho} \log_2 x \right).$$

Putting these inequalities together gives us

$$\#S_\alpha \leq x^{1-(\alpha/\rho)} \exp \left((1 + o(1)) 2 \frac{1}{\rho} \left(\log x \right)^{1/\rho} \log_2 x \right) = x^{1-(\alpha/\rho)+o(1)}.$$

Fix $\delta > 0$. There exists some $m \leq x^{(1+\delta)\alpha/\rho}$ with the property that

$$g(m) > x^{(1+\delta)\alpha/\rho}/(1+\delta) = x^\alpha.$$

Therefore,

$$\#S_\alpha \geq \#\{n \leq x : m|n\} \sim x/m \geq x^{1-(1+\delta)(\alpha/\rho)}.$$

Taking the limit as $\delta \to 0$ shows that

$$\#S_\alpha \geq x^{1-(\alpha/\rho)+o(1)},$$

completing our proof. \qed

4. Small values of β

Using the $(1/\rho)$-th moment of $g(n)$ and the results from Section 2, we obtain the following upper bound for the small positive moments of $g(n)$. (For every result in the next two sections, we let $\beta \in (0, 1/\rho)$.)

Theorem 4.1. For all β, we have

$$\sum_{n \leq x} g(n)^\beta \leq x \exp((\log x)^{\beta^2+o(1)}).$$

In the next section, we prove the following theorem.

Theorem 4.2. If there exists a constant $C > 1$ such that

$$\sum_{n \leq x} g(n)^\beta \leq x \exp((\log x)^{\beta^C+o(1)}).$$
uniformly for all β, then

$$\sum_{n \leq x} g(n)^\beta \leq x \exp((\log x)^{\beta C+1+o(1)})$$

uniformly for all β as well.

Applying this result arbitrarily many times allows us to obtain the upper bound in Theorem 1.1, which we rewrite here.

Theorem 4.3. We have

$$\sum_{n \leq x} g(n)^\beta = x \exp((\log x)^{o(1)}).$$

Before doing any of this, we write a few lemmas. We first show that we may assume that $g(n)$ is small. Afterwards, we prove that we may assume that A and $\Omega(B)$ are small as well.

Lemma 4.4. For all β, we have

$$\sum_{n \leq x} g(n)^\beta \leq x \exp((\log x)^{o(1)})$$

for some positive constant c_2.

Proof. Fix a large number M. We consider

$$\sum_{k > M} \sum_{e^k \leq g(n) < e^{k+1}} g(n)^\beta.$$

We then show that for any k, the inner sum is sufficiently small. Note that the number of k for which $g(n) < e^{k+1}$ for some $n \leq x$ is on the order of $\log x$. We have

$$\sum_{e^k \leq g(n) < e^{k+1}} g(n)^\beta \ll e^{\beta k} \#\{n \leq x : g(n) \geq e^k\}.$$

From the proof of Theorem 3.5, we see that

$$\#\{n \leq x : g(n) \geq e^k\} \leq x e^{-k/\rho} \exp \left((1 + o(1))2 \left(\frac{2}{\log 2}\right)^{1/\rho} (\log x)^{1/\rho} \log_2 x \right),$$
which implies that
\[
\sum_{x^k \leq g(n) < x^{k+1}} g(n)^\beta
\leq x \exp \left(-k \left(\frac{1}{\rho} - \beta \right) + (1 + o(1))2 \left(\frac{2}{\log 2} \right)^{1/\rho} (\log x)^{1/\rho \log_2 x} \right).
\]
If
\[
k > \left(\frac{2\rho}{1 - \rho \beta} \left(\frac{2}{\log 2} \right)^{1/\rho} + \epsilon \right) (\log x)^{1/\rho \log_2 x}
\]
for some \(\epsilon > 0 \), then the upper bound is \(O(x) \).

From here on, we assume that
\[
g(n) \leq \exp(c_2(\log x)^{1/\rho \log_2 x}).
\]
From [12, Lemma 2.6], we have
\[
g(n) \gg 2^{\Omega(n)},
\]
allowing us to assume that
\[
\Omega(n) \leq (\log x)^{(1/\rho) + o(1)}.
\]

Lemma 4.5. We have
\[
\sum_{n \leq x} g(n)^\beta \leq x \exp((\log x)^{(\beta/\rho) + o(1)}) \sum_{A \leq x} \frac{g(A)^\beta}{A}.
\]

Proof. Recall that
\[
\sum_{n \leq x} g(n)^\beta = \sum_{A \leq x} \sum_{B \leq x/A} g(AB)^\beta.
\]
By Lemma 2.1,
\[
g(AB) \leq g(A) \cdot (2\Omega(n))^{\Omega(B)} \leq g(A) \cdot ((\log x)^{(1/\rho) + o(1)} \Omega > c_1(\log x)^{\beta}(n).
\]
Therefore,
\[
\sum_{n \leq x} g(n)^\beta
\leq \sum_{A \leq x} g(A)^\beta \sum_{B \leq x/A} ((\log x)^{(\beta/\rho) + o(1)} \Omega > c_1(\log x)^{\beta}(n).
\]
By Lemma 2.3, the final sum in this expression is at most
\[
\frac{x}{A} \exp((\log x)^{(\beta/\rho) + o(1)}).
\]
We now have
\[\sum_{n \leq x} g(n)^\beta \leq x \exp((\log x)^{(\beta/\rho)+o(1)}) \sum_{A \leq x} \frac{g(A)^\beta}{A}. \]
\[\sum_{A > \exp(c_3(\log x)^\beta)} \frac{g(A)^\beta}{A}. \]
\[\sum_{n \leq x} g(n)^\beta = o(x). \]

Lemma 4.6. For a sufficiently large constant \(c_3 \),
\[\sum_{n \leq x} g(n)^\beta = o(x). \]

Proof. Fix a large number \(M \). By the previous result, we have
\[\sum_{n \leq x} g(n)^\beta \leq x \exp((\log x)^{(\beta/\rho)+o(1)}) \sum_{M < A \leq x} \frac{g(A)^\beta}{A}. \]

Note that \(g(A)^\beta \ll A^{\rho\beta} \), which implies that
\[\sum_{M < A \leq x} \frac{g(A)^\beta}{A} \ll M^{-(1-\rho\beta)} \Psi(x, c_1(\log x)^\beta). \]
By Theorem 2.4,
\[\Psi(x, c_1(\log x)^\beta) = \exp\left((1+o(1)) \frac{c_1(1-\beta)}{\beta}(\log x)^\beta \right). \]
If
\[M > \exp\left(\left(\frac{c_1(1-\beta)}{\beta(1-\rho\beta)} + \epsilon \right)(\log x)^\beta \right) \]
for some \(\epsilon > 0 \), then
\[M^{-(1-\rho\beta)} \Psi(x, c_1(\log x)^\beta) \leq \exp(-\epsilon(\log x)^\beta), \]
which implies that
\[\sum_{n \leq x} g(n)^\beta = o(x). \]

Lemma 4.7. For all \(\epsilon > 0 \), we have
\[\sum_{n \leq x} g(n)^\beta = o(x). \]

Proof. Once again, let \(M \) be a large number. By the previous theorem, we may assume that \(A \leq \exp(c_3(\log x)^\beta) \). We have
\[\sum_{n \leq x} g(n)^\beta \leq \sum_{A \leq \exp(c_3(\log x)^\beta)} \frac{g(A)^\beta}{A} \sum_{B \leq x/A} \Omega(B)^{\beta\Omega(B)}. \]
By assumption,
\[\Omega(n) \leq (\log x)^{(1/\rho)+o(1)}. \]
By definition, \(\Omega(B) = \Omega_{>c_1(\log x)^\beta}(B) \). In addition, multiplying each term by
\[\exp(\beta \Omega_{>c_1(\log x)^\beta}(B) - \beta M) \]
increases the sum. Hence,
\[
\sum_{B \leq x/A, \Omega(B) > M} (2\Omega(n))^{\beta \Omega(B)} \leq \sum_{B \leq x/A} ((\log x)^{(1/\rho)+o(1)})^{\beta \Omega_{>c_1(\log x)^\beta}(n)} \cdot \exp(\beta \Omega_{>c_1(\log x)^\beta}(B) - \beta M)
\]
\[= \exp(-\beta M) \sum_{B \leq x/A} ((\log x)^{(1/\rho)+o(1)})^{\beta \Omega_{>c_1(\log x)^\beta}(B)} \leq \frac{x}{A} \exp((\log x)^{(\beta/\rho)+o(1)} - \beta M). \]

If \(M > (\log x)^{\beta+\epsilon} \), then this sum is at most
\[
\frac{x \exp(-(\log x)^{\beta+\epsilon+o(1)})}{A}.
\]
Plugging this back into our original formula gives us
\[
\sum_{n \leq x \atop A \leq \exp(c_2(\log x)^\beta)} g(n)^\beta \leq x \exp(-(\log x)^{\beta+\epsilon+o(1)}) \sum_{A \leq \exp(c_3(\log x)^\beta)} \frac{g(A)^\beta}{A}.
\]
Note that the rightmost sum is \(O(\exp(c_3(\log x)^\beta)) \) because \(g(A)^\beta/A = O(1) \). We now have
\[
\sum_{n \leq x \atop A \leq \exp(c_3(\log x)^\beta)} g(n)^\beta \leq x \exp(-(\log x)^{\beta+\epsilon+o(1)}). \tag*{\square}
\]

To summarize, we may now assume that \(\log A, \Omega(B) \leq (\log x)^{\beta+o(1)} \).
From these assumptions, we may improve Lemma 4.5.

Theorem 4.8. We have
\[
\sum_{n \leq x} g(n)^\beta \leq x \exp((\log x)^{\beta^2+o(1)}) \sum_{A \leq \exp((\log x)^{\beta^2+o(1)})} \frac{g(A)^\beta}{A}.
\]

Proof. Once again, we have
\[g(AB) \leq g(A) \cdot (2\Omega(n))^{\Omega_{>c_1(\log x)^\beta}(n)}. \]
In this case, we have a more precise bound for \(\Omega(n) \). Note that
\[\Omega(A) \ll \log A \leq (\log x)^{\beta+o(1)}, \quad \Omega(B) \leq (\log x)^{\beta+o(1)}. \]
Therefore,
\[g(AB) \leq g(A) \cdot ((\log x)^{\beta + o(1)})^{\Omega_{\nu > c_1 (\log x)^{\beta}} (n)}. \]

We now have
\[\sum_{n \leq x} g(AB)^{\beta} \leq \sum_{A \leq \exp (c_2 (\log x)^{\beta})} g(A)^{\beta} \sum_{B \leq x / A} ((\log x)^{\beta + o(1)})^{\beta \Omega_{\nu > c_1 (\log x)^{\beta}} (n)}. \]

By Lemma 2.3, the rightmost sum is at most
\[\frac{x}{A} \exp ((\log x)^{\beta^2 + o(1)}). \]

Using these results, we obtain a new upper bound on the sum of \(g(n)^{\beta} \).

Theorem 4.9. We have
\[\sum_{n \leq x} g(n)^{\beta} \leq x \exp ((\log x)^{\beta^2 + o(1)}). \]

Proof. Because of the previous result, it is sufficient to show that
\[\sum_{A \leq c_3 \exp (\log x)^{\beta}} g(A)^{\beta} \frac{A}{A} = \exp ((\log x)^{o(1)}). \]

We break the sum into “e-adic” intervals, based on the sizes of \(A \) and \(g(A) \):
\[\sum_{A \leq \exp (c_3 (\log x)^{\beta})} g(A)^{\beta} \frac{A}{A} = \sum_{k \leq c_2 (\log x)^{\beta}} \sum_{\log_2 x} \sum_{m \leq \rho c_2 (\log x)^{\beta} \log_2 x} \sum_{e^k \leq A < e^{k+1}} \sum_{e^m \leq g(A) < e^{m+1}} g(A)^{\beta} \frac{A}{A}. \]

Because the number of possible \(k \) and \(m \) is sufficiently small, we only need to show that
\[\sum_{e^k \leq A < e^{k+1}} \sum_{e^m \leq g(A) < e^{m+1}} g(A)^{\beta} \frac{A}{A} = \exp ((\log x)^{o(1)}) \]
for all possible \(k \) and \(m \).

For any \(k, m \), we have
\[\sum_{e^k \leq A < e^{k+1}} \sum_{e^m \leq g(A) < e^{m+1}} g(A)^{\beta} \frac{A}{A} \leq \sum_{e^k \leq A < e^{k+1}} \sum_{e^m \leq g(A) < e^{m+1}} e^{m \beta - k} \leq e^{m \beta - k} \# \{ A < e^{k+1} : g(A) \geq e^m \}. \]

By Theorem 3.5,
\[\# \{ A < e^{k+1} : g(A) \geq e^m \} \leq e^{k - (m/\rho) + o(k)}, \]
which implies that
\[\sum_{e^k \leq A < e^{k+1}} \frac{g(A)^\beta}{A} \leq e^{m\beta - (m/\rho) + o(k)}. \]

Fix a constant \(\epsilon \). If \(k < m/\epsilon \), then the exponent is negative for \(x \) sufficiently large because \(\beta < 1/\rho \).

Suppose \(m \leq \epsilon k \). We have
\[\sum_{e^k \leq A < e^{k+1}} \frac{g(A)^\beta}{A} \leq \sum_{e^k \leq A < e^{k+1}} A^{-(1-\epsilon + o(1))} \]
\[\leq e^{-(1-\epsilon + o(1))k} \Psi(e^{k+1}, c_1(\log x)^\beta). \]

By assumption, \(k \leq c_3(\log x)^\beta \). If \(k = o((\log x)^\beta) \), then
\[\Psi(e^{k+1}, c_1(\log x)^\beta) = \exp \left((1 + o(1)) \left(k - \frac{1}{\beta} \frac{k \log k}{\log_2 x} \right) \right) \]
by Theorem 2.4. We now have
\[\sum_{e^k \leq A < e^{k+1}} \frac{g(A)^\beta}{A} \leq \exp \left(-(1 + o(1)) \left(\frac{1}{\beta} \frac{k \log k}{\log_2 x} - \epsilon k \right) + o(k) \right). \]

If \(k > (\log x)^C \) for some constant \(C > \beta \epsilon \), then this quantity is \(o(1) \). Otherwise, the sum is still at most \(\exp((\log x)^{\beta \epsilon + o(1)}) \leq \exp((\log x)^{\epsilon/\rho + o(1)}) \).
Letting \(\epsilon \) go to 0 gives us our desired result. \(\square \)

5. Improving our bound

In the previous section, we obtained an upper bound for the sum of \(g(n)^\beta \) for all \(\beta < 1/\rho \). Using this bound, we can obtain a substantially better result using the following theorem.

Theorem 5.1. Let \(C > 1 \) be a constant. Suppose
\[\sum_{n \leq x} g(n)^\beta \leq x \exp((\log x)^{3C + o(1)}) \]
for all \(\beta \in (0, 1/\rho) \). Then,
\[\sum_{n \leq x} g(n)^\beta \leq x \exp((\log x)^{\beta C + 1 + o(1)}) \]
for all such \(\beta \) as well.
Proof. Let \(k \) be a large number. Let \(S \) be the set of all \(n \leq x \) satisfying \(e^k \leq g(n) < e^{k+1} \). We consider the sum of \(g(n)^\beta \) over all \(n \in S \). Note that
\[
\sum_{n \in S} g(n)^\beta \leq e^\beta e^{3k} \#S \leq e^{1/\rho} e^{\beta k} \#S.
\]

We bound the righthand side of the inequality above. Let \(\beta_0 \in (\beta, 1/\rho) \). We have
\[
\sum_{n \in S} g(n)^\beta \geq e^{\beta_0 k} \#S.
\]

By assumption,
\[
\sum_{n \leq x} g(n)^\beta_0 \leq x \exp((\log x)^{\beta_0^C + o(1)}).
\]
In particular, for any \(\epsilon \), there exists a number \(N \) such that if \(x > N \), then
\[
\sum_{n \leq x} g(n)^\beta_0 \leq x \exp((\log x)^{\beta_0^C + \epsilon}),
\]
which implies that
\[
\#S \leq x e^{-\beta_0 k} \exp((\log x)^{\beta_0^C + \epsilon})
\]
for all sufficiently large \(x \). (Note that \(N \) is independent of \(k \).) Plugging this into our \(g(n)^\beta \) sum gives us
\[
\sum_{n \in S} g(n)^\beta \leq x e^{-(\beta_0 - \beta)k} \exp((\log x)^{\beta_0^C + \epsilon}).
\]

If \(k > (\log x)^{\beta_0^C + \epsilon} \), then this quantity is \(o(x) \). Because the number of such \(k \) is sufficiently small, we may assume that \(k \leq (\log x)^{\beta_0^C + \epsilon} \). We may therefore assume that \(g(n) \leq \exp((\log x)^{\beta_0^C + \epsilon + o(1)}) \) and \(\Omega(n) \leq (\log x)^{\beta_0^C + \epsilon + o(1)} \). If \(x \) is sufficiently large, we have \(\Omega(n) \leq (\log x)^{\beta_0^C + 2\epsilon} \).

Using this bound on \(\Omega(n) \), we may bound the sum of \(g(n)^\beta \). We have
\[
\sum_{n \leq x} g(n)^\beta \leq \sum_{A \leq x} g(A)^\beta \sum_{B \leq x/A} (2\Omega(n))^{\beta\Omega(B)}.
\]

Suppose \(\beta_0^C + \epsilon < \beta \). Plugging in our bound on \(\Omega(n) \) allows us to bound the rightmost sum:
\[
\sum_{B \leq x/A} (2\Omega(n))^{\beta\Omega(B)} \leq \sum_{B \leq x/A} ((\log x)^{\beta_0^C + 2\epsilon})^{\beta\Omega_{>1}(\log x)^{\beta}(n)}
\]
\[
\leq \frac{x}{A} \exp((\log x)^{\beta_0^C + 2\beta\epsilon + o(1)}).
\]
For x sufficiently large, we may bound the sum by
\[\frac{x}{A} \exp((\log x)^{\beta_0^C + 3\beta \epsilon}). \]

We now have
\[\sum_{\Omega(n) \leq (\log x)^{\beta_0^C + 2\epsilon}} g(n)^\beta \leq x \exp((\log x)^{\beta_0^C + 3\beta \epsilon}) \sum_{\Omega(A) \leq (\log x)^{\beta_0^C + 2\epsilon}} \frac{g(A)^\beta}{A}. \]

Our bound on $\Omega(A)$ gives us $A \leq \exp((\log x)^{\beta_0^C + \epsilon + o(1)}).$ In the proof of Theorem 4.9, we showed that the sum of $g(A)^\beta / A$ over all such A is $\exp((\log x)^{o(1)}).$ For x sufficiently large, the sum is at most $\exp((\log x)^{\beta \epsilon}).$

Putting everything together gives us
\[\sum_{n \leq x} g(n)^\beta \leq x \exp((\log x)^{\beta_0^C + 4\beta \epsilon}). \]

Our desired result comes from the fact that we may assume that $\beta_0 - \beta$ and ϵ are both arbitrarily small. \qed

Applying this result arbitrarily many times proves that
\[\sum_{n \leq x} g(n)^\beta = x \exp((\log x)^{o(1)}). \]

6. A lower bound for the small moments

Let $\tilde{g}(n)$ be the number of factorizations of n into coprime parts greater than 1. Just and the author [10] recently proved that
\[\sum_{n \leq x} \tilde{g}(n)^\beta = \frac{1 - \beta}{(\log 2)^{\beta/(1-\beta)}(\log_2 x)^{1/(1-\beta)}} \exp\left((\log L_0 + \log L_0 / L_0 + O\left(\frac{1}{L_0}\right)) k\right), \]
for all $\beta \in (0,1).$ Because $g(n) \geq \tilde{g}(n)$ for all n, this quantity is a lower bound for the sum of $g(n)^\beta.$ We provide a slightly larger lower bound for this sum. Before doing so, we write a theorem that will prove useful [17, Theorem 3.1] (see [17, Theorem 4.1] for a corresponding upper bound and [6, Corollary 2] for a more precise version of this result on a smaller interval). Let $\pi(x,k)$ be the number of $n \leq x$ with exactly k distinct prime factors.

Theorem 6.1. For
\[\log_2 x (\log x)^2 \leq k \leq \frac{\log x}{3 \log_2 x}, \]
we have
\[\pi(x,k) \geq \frac{x}{k! \log x} \exp\left((\log L_0 + \frac{\log L_0}{L_0} + O\left(\frac{1}{L_0}\right)) k\right), \]
with
\[L_0 = \log_2 x - \log k - \log_2 k. \]
We also impose a lower bound on the smallest prime factors of our values of \(n \). For a given number \(R \), we let \(\pi(x, k, R) \) be the number of \(R \)-rough \(n \leq x \) with exactly \(k \) distinct prime factors.

Corollary 6.2. Let \(x \) and \(k \) satisfy the conditions of the previous theorem and let \(R \) be a fixed positive number. As \(x \to \infty \), we have

\[
\pi(x, k, R) \geq \frac{x}{k! \log x} \exp\left(\left(\log L_0 + \frac{\log L_0}{L_0} + O \left(\frac{1}{L_0} \right) \right) k \right).
\]

Proof. Let \(n \leq x \) be an \(R \)-rough number with exactly \(k \) distinct prime factors. In the proof of the previous theorem, Pomerance already assumes that every prime factor of \(n \) is greater than or equal to \(k^2 \), which we may assume is greater than \(R \). In addition, this proof is entirely self-contained except for a reference to [17, Proposition 2.1]. However, it is straightforward to modify the proof of this result to assume that \(n \) is \(R \)-rough. \(\square \)

Using the results of [2], we bound \(g(n)^\beta \) on a suitable set of \(n \leq x \) and multiply this bound by the size of the set.

Definition 6.3 ([2, Définition 2.1] (see also [4, Theorem 1])). For a tuple \((a_1, \ldots, a_r) \), let \(c = c(a_1, \ldots, a_r) \) be the unique solution to the equation

\[
\prod_{i=1}^{r} \left(1 + \frac{a_i}{c} \right) = 2.
\]

Definition 6.4 ([2, Définition 3.1]). With \(c \) defined above, we have

\[
F := F(a_1, \ldots, a_r) = \sum_{i=1}^{r} a_i \log \left(1 + \frac{c}{a_i} \right).
\]

Lemma 6.5 ([2, Théorème 2]). Let \(n = p_1^{a_1} \cdots p_r^{a_r} \). We have

\[
g(n) \gg \exp\left(F - r \right) \sqrt{a_1 \cdots a_r}.
\]

Theorem 6.6. If \(\beta \in (0, 1/\rho) \), then

\[
\sum_{n \leq x} g(n)^\beta \geq x \exp((C_g + o(1))(\log_2 x)^{1/(1-\beta)}),
\]

with

\[
C_g = \frac{1 - \beta}{(\log 2)^{\beta/(1-\beta)}} \exp\left(\frac{\beta}{(\log 2)(1-\beta)} \sum_p \frac{1}{e^{\log^k \beta}} - 1 \right).
\]

Proof. Let \(k \) be a number on the order of \((\log_2 x)^C\) for some \(C > 1 \) and let \((\alpha_1, \ldots, \alpha_r) \) be a tuple of positive real numbers which is independent of \(x \). Let \(S \) be the set of numbers \(n \leq x \) of the form \(p_1^{a_1-k} \cdots p_r^{a_r-k} m \), where \(p_i \) is the \(i \)th prime and \(m \) is a \(p_r \)-rough number with exactly \(k \) distinct prime
factors. We bound \(\#S \) from below, in addition to providing a lower bound for \(g(n) \) for all \(n \in S \).

Because the \(p_i \) and \(\alpha_i \) are fixed, the number of elements of \(S \) is equal to the number of possible values of \(m \). By assumption,

\[
m \leq \frac{x}{p_1^{\alpha_1 k} \cdots p_r^{\alpha_r k}}.
\]

Therefore,

\[
\#S = \pi \left(\frac{x}{p_1^{\alpha_1 k} \cdots p_r^{\alpha_r k}, k, p_r} \right)
\geq x \exp \left(k \log_3 x - k \log k + \left(1 - \left(\sum_{i=1}^{r} (\log p_i) \alpha_i \right) + o(1) \right) k \right).
\]

At this point, we bound \(g(n) \). Because we only need a lower bound, we assume that \(m \) is squarefree. In our case, we have

\[
\left(\frac{1 + \frac{1}{c}}{c} \right)^k \prod_{i=1}^{r} \left(1 + \frac{\alpha_i k}{c} \right) = 2.
\]

Though we cannot determine \(c \) exactly, we can still obtain a suitable lower bound. Because

\[
\left(\frac{1 + \frac{1}{c}}{c} \right)^k \leq 2,
\]

we have

\[
c \geq \frac{1}{2^{1/k} - 1} \sim \frac{k}{\log 2},
\]

giving us

\[
F = k \log (1 + c) + \sum_{i=1}^{r} \alpha_i k \log \left(1 + \frac{c}{\alpha_i k} \right)
\geq k \log k + \left(\sum_{i=1}^{r} \alpha_i \log \left(1 + \frac{1}{(\log 2) \alpha_i} \right) - \log 2 + o(1) \right) k.
\]

Note that \((\alpha_1 k) \cdots (\alpha_r k) = \exp(o(k)) \). Hence,

\[
g(n) \geq \exp \left(k \log k + \left(\sum_{i=1}^{r} \alpha_i \log \left(1 + \frac{1}{(\log 2) \alpha_i} \right) - 1 - \log 2 + o(1) \right) k \right)
\]

for all \(n \in S \).
We combine our estimates in order to bound the sum:
\[
\sum_{n \leq x} g(n)^\beta \geq \sum_{n \in S} g(n)^\beta \\
\geq \left(\min_{n \in S} g(n) \right)^\beta \#S \\
\geq x \exp(k \log_3 x - (1 - \beta)k \log k + (M + o(1))k),
\]
with
\[
M = 1 - (1 + \log_2 2)\beta + \sum_r \alpha_i \left(\beta \log \left(1 + \frac{1}{(\log 2)\alpha_i} \right) - \log p_i \right).
\]
At this point, we select the \(\alpha_i \)'s in order to maximize \(M \). For all \(i \), we have
\[
\frac{\partial M}{\partial \alpha_i} = \beta \log \left(1 + \frac{1}{(\log 2)\alpha_i} \right) - \log p_i - \frac{\beta}{1 + (\log 2)\alpha_i} = 0.
\]
Because we cannot write \(\alpha_i \) in terms of \(p_i \) nicely, we instead solve a similar equation and plug our result into our formula for \(M \). While this result is not optimal, it still provides a lower bound. As \(i \to \infty \), \(\alpha_i \to 0 \). Setting \(\alpha_i \) to 0 in the final term gives us
\[
\beta \log \left(1 + \frac{1}{(\log 2)\alpha_i} \right) - \log p_i - \beta = 0,
\]
which implies that
\[
\alpha_i = \frac{1}{(\log 2)(e^{p_i^{1/\beta}} - 1)}.
\]
(Technically, \(\alpha_i k \) must be an integer, but rounding \(\alpha_i k \) down does not change the final result.) Hence,
\[
M = 1 - (1 + \log_2 2)\beta + \frac{\beta}{\log 2} \sum_{i=1}^r \frac{1}{e^{p_i^{1/\beta}} - 1}.
\]
Letting \(i \) go to \(\infty \) gives us
\[
M = 1 - (1 + \log_2 2)\beta + \frac{\beta}{\log 2} \sum_p \frac{1}{e^{p^{1/\beta}} - 1}.
\]
In order to finish the proof, we choose \(k \) to maximize the sum of \(g(n)^\beta \).
Recall that
\[
\sum_{n \leq x} g(n)^\beta \geq x \exp(k \log_3 x - (1 - \beta)k \log k + (M + o(1))k).
\]
If \(k > (\log_2 x)^{(1/(1-\beta)) + \epsilon} \) for some \(\epsilon > 0 \), then our bound is \(o(x) \). If \(k < (\log_2 x)^{(1/(1-\beta)) - \epsilon} \), then the bound is \(x \exp((\log_2 x)^{(1/(1-\beta)) - \epsilon + o(1)}) \). Let \(k = \frac{(1/(1-\beta))}{\log_2 x} \).
$R(\log_2 x)^{1/(1-\beta)}$ for some $R = (\log_2 x)^{o(1)}$. We have
\[
\sum_{n \leq x} g(n)^\beta \geq x \exp(R(M - (1 - \beta) \log R + o(1))(\log_2 x)^{1/(1-\beta)}).
\]
The optimal value of R is the solution to the equation
\[
\frac{d}{dR}(R(M - (1 - \beta) \log R)) = M - (1 - \beta) \log R - (1 - \beta) = 0,
\]
namely
\[
R = \exp\left(\frac{M}{1 - \beta - 1}\right),
\]
which implies that
\[
\sum_{n \leq x} g(n)^\beta \geq x \exp((1 + o(1))(1 - \beta)R(\log_2 x)^{1/(1-\beta)}).
\]
We have
\[
R = \frac{1}{(\log 2)^{\beta/(1-\beta)}} \exp\left(\frac{\beta}{(\log 2)(1 - \beta)} \sum_p \frac{1}{\exp^{1/\beta} - 1}\right),
\]
completing the proof.

The lower bound for the sum of $\tilde{g}(n)^\beta$ is the result one obtains by letting $(\alpha_1, \ldots, \alpha_r)$ be the empty tuple.

7. Factorizations into distinct parts

Let $G(n)$ be the number of ordered factorizations of n into distinct parts greater than 1. Warlimont \cite{19} showed that
\[
\sum_{n \leq x} G(n) = x \cdot L(x)^{O(1)},
\]
where
\[
L(x) = \exp\left(\frac{\log x \log_3 x}{\log_2 x}\right).
\]
The author and Pollack \cite{14} recently improved this result, showing that
\[
\sum_{n \leq x} G(n) = x \cdot L(x)^{1+o(1)}.
\]
In addition, we proved that for any $\epsilon > 0$, there exist infinitely many n for which
\[
G(n) > n \cdot L(n)^{1-\epsilon}.
\]
A slight modification of the proof shows that
\[
\max_{n \leq x} G(n) = x \cdot L(x)^{1+o(1)}.
\]
From these bounds, we can obtain a formula for the β-th moments of G for all $\beta > 1$. We have

$$\left(\max_{n \leq x} G(n) \right)^\beta \leq \sum_{n \leq x} G(n)^\beta \leq \left(\sum_{n \leq x} G(n) \right)^\beta,$$

which implies that

$$\sum_{n \leq x} G(n)^\beta = x^\beta \cdot L(x)^{\beta + o(1)}.$$

Just and the author [10] also showed that the negative moments of G have the same formula as the negative moments of g, up to a negligible error. If $\beta > 0$, then

$$\sum_{n \leq x} G(n)^{-\beta} = \frac{x}{\log x} \exp((1 + o(1))(1 + \beta)(\log 2)^{\beta/(1 + \beta)}(\log_2 x)^{1/(1 + \beta)}).$$

All that remains is to estimate the small positive moments of G. We do not provide an upper bound, but we can prove a lower bound using an argument similar to the proof of Theorem 6.6. Because we do not have an asymptotic formula for $G(n)$, we use a combinatorial argument.

Once again, we let S be the set of $n \leq x$ of the form $p_1^{\alpha_1 k} \cdots p_r^{\alpha_r k} m$, where p_i is the ith prime, m is a p_r-rough number with exactly k distinct prime factors, and k is on the order of $(\log_2 x)^{1/(1 - \beta)}$. In the previous section, we established that

$$\#S \geq x \exp\left(k \log_3 x - k \log k + \left(1 - \sum_{i=1}^r (\log p_i) \alpha_i + o(1)\right) k\right).$$

We now bound $G(n)$ for all $n \in S$. First, we write m as a product of exactly k coprime numbers greater than 1, which we can do in $k!$ ways. Then, for each i, we write $p_i^{\alpha_i k}$ as a product of exactly k numbers (not necessarily greater than 1). For each i, we can do this in

$$\binom{(1 + \alpha_i)k - 1}{k}$$

ways. We then combine our factorizations into one k-term product. The terms are distinct because they have distinct p_r-rough parts. Hence,

$$G(n) \geq k! \prod_{i=1}^r \binom{(1 + \alpha_i)k - 1}{k} = \exp(k \log k + \left(\sum_{i=1}^r (1 + \alpha_i) \log(1 + \alpha_i) - \alpha_i \log \alpha_i\right) - 1 + o(1)) k).$$
Repeating the argument from the previous section gives us
\[
\sum_{n \leq x} G(n)^\beta \geq x \exp \left((1 + o(1))(1 - \beta) \left(\prod_p \left(1 + \frac{1}{p^{1/\beta} - 1} \right)^{\beta/(1-\beta)} \right) (\log x)^{1/(1-\beta)} \right)
\]
for all \(\beta \in (0, 1) \).

For all \(n \), \(G(n) \geq \tilde{g}(n) \). Our result is an improvement over the sum of \(\tilde{g}(n)^\beta \) when
\[
\prod_p \left(1 + \frac{1}{p^{1/\beta} - 1} \right) > \frac{1}{\log 2},
\]
which occurs when \(\beta > 0.438 \).

8. Factorizations into prime parts

Let \(g_p(n) \) be the number of factorizations of \(n \) into prime parts. Hernane and Nicolas [5] note that a result from [13] implies that
\[
\sum_{n \leq x} g_p(n) \sim -\frac{1}{\lambda \zeta_p(\lambda)} x^\lambda,
\]
where \(\zeta_p \) is the Riemann zeta function restricted to prime terms and \(\lambda \approx 1.40 \) is the unique solution in \((1, \infty) \) to \(\zeta_p(\lambda) = 2 \). They also showed that there exist positive constants \(C_3 \) and \(C_4 \) such that
\[
x^\lambda \exp \left(-C_3 \frac{(\log x)^\lambda}{\log_2 x} \right) \leq \max_{n \leq x} g_p(n) \leq x^\lambda \exp \left(-C_4 \frac{(\log x)^\lambda}{\log_2 x} \right)
\]
for all sufficiently large \(x \). An argument similar to the proof of Theorem 3.4 shows that if \(\beta \geq 1 \), then
\[
x^\lambda \beta \exp \left(-C_3 \beta \frac{(\log x)^{1/\lambda}}{\log_2 x} \right) \leq \sum_{n \leq x} g_p(n)^\beta \leq x^\lambda \beta \exp \left(-C_4 (\beta - 1) \frac{(\log x)^{1/\lambda}}{\log_2 x} \right)
\]
for all sufficiently large \(x \) as well.

Recall that Lemma 2.1 states that for any \(n_1, n_2 \in \mathbb{Z}_+ \), we have
\[
g(n_1 n_2) \leq g(n_1) \cdot (2\Omega(n_1 n_2))^{\Omega(n_2)}.
\]
It is straightforward to modify Klazar and Luca’s proof of this result to apply to \(g_p \).

Lemma 8.1. For any two integers \(n_1 \) and \(n_2 \), we have
\[
g_p(n_1 n_2) \leq g_p(n_1) \cdot (2\Omega(n_1 n_2))^{\Omega(n_2)}.
\]
From this result, we obtain variants of Corollary 3.2 and Theorem 3.3. If $\beta \in [1/\lambda, 1)$, then
\[
x^{\lambda \beta} \exp \left(C_4 (1-\beta) \frac{(\log x)^{1/\lambda}}{\log_2 x} \right) \leq \sum_{n \leq x} g_P(n)^{\beta}
\leq x^{\lambda \beta} \exp \left((1+o(1)) \left(\frac{2}{\log 2} \right)^{1/\lambda} (\log x)^{1/\lambda \log_2 x} \right)
\]
for all sufficiently large x. Applying the lemma and repeating the techniques of Sections 4 and 5 shows that if $\beta \in (0, 1/\lambda)$, then
\[
\sum_{n \leq x} g_P(n)^{\beta} = x \exp((\log x)^o(1)).
\]

Finally, we note that for any tuple (a_1, \ldots, a_r), we have
\[
g_P(p_1^{a_1} \cdots p_r^{a_r}) = \left(\frac{a_1 + \cdots + a_r}{a_1, \ldots, a_r} \right).
\]

Using this result, we obtain a lower bound for the small moments of g_P. If $\beta < 1/\lambda$, then
\[
\sum_{n \leq x} g_P(n)^{\beta} \geq x \exp \left((1+o(1))(1-\beta) \left(1 - \sum_p \frac{1}{p^{1/\beta}} \right)^{-\beta/(1-\beta)} (\log_2 x)^{1/(1-\beta)} \right).
\]
Noah Lebowitz-Lockard

8330 Millman St.
Philadelphia, PA, 19118, United States
E-mail: nlebovi@gmail.com
URL: https://noahlockard.wordpress.com/