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de Bordeaux 32 (2020), 901–921

Greenberg algebras and ramified Witt vectors

par Alessandra BERTAPELLE et Maurizio CANDILERA

Résumé. Soit O un anneau complet pour une valuation discrète, de caracté-
ristique mixte et de corps résiduel fini κ. Dans cet article, on présente l’étude
d’un morphisme naturel r : RO →WO,κ entre l’algèbre de Greenberg de O et
la fibre spéciale du schéma des vecteurs de Witt ramifiés sur O. Ce morphisme
est un homéomorphisme universel avec un noyau pro-infinitésimal qui, dans
certains cas, peut être décrit explicitement.

Abstract. Let O be a complete discrete valuation ring of mixed character-
istic and with finite residue field κ. We study a natural morphism r : RO →
WO,κ between the Greenberg algebra of O and the special fiber of the scheme
of ramified Witt vectors over O. It is a universal homeomorphism with pro-
infinitesimal kernel that can be explicitly described in some cases.

1. Introduction

Let O be a complete discrete valuation ring with field of fractions K of
characteristic 0 and perfect residue field κ of positive characteristic p. We
fix a uniformizing parameter π ∈ O. It is known from [2, 8, 10] that for
any n ∈ N one can associate a Greenberg algebra Rn to the artinian local
ring O/πnO, i.e., the algebraic κ-scheme that represents the fpqc sheaf
associated to the presheaf

{affine κ-schemes} → {O/πnO-algebras},
Spec(A) 7→W (A)⊗W (κ) O/πnO,

where W (A) is the ring of p-typical Witt vectors with coefficients in A.
There are canonical morphisms Rn → Rm for n ≥ m, and passing to the
limit one gets an affine ring κ-scheme RO such that W (A) ⊗W (κ) O =
RO(A) := Homκ(Spec(A),RO) for any κ-algebra A; see (2.1). The Green-
berg algebra Rn is the fundamental stone for the construction of the Green-
berg realization Grn(X) of a O/πnO-scheme X; this is a κ-scheme whose
set of κ-rational sections coincides with X(O/πnO) [8], [2, Lemma 7.1], and
it plays a role in many results in Arithmetic Geometry.

Assume that κ is finite. One can define for any O-algebra A the algebra
WO(A) of ramified Witt vectors with coefficients in A [1, 6, 7, 9, 11]. These
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algebras are important objects in p-adic Hodge theory. It is well-known that
if A is a perfect κ-algebra, there is a natural isomorphism

W (A)⊗W (κ) O 'WO(A)

(see [7, I.1.2], [1, §1.2], [11, Proposition 1.1.26]). Hence RO(A) ' WO(A)
if A is a perfect κ-algebra. For a general κ-algebra A, Drinfeld’s map
u : W (A) → WO(A) induces a unique homomorphism of O-algebras
RO(A) → WO(A), functorial in A. Hence there is a morphism of ring
schemes over κ

r : RO →WO ×O Spec(κ),

where WO is the ring scheme of ramified Witt vectors over Spec(O), that
is, WO(A) = HomO(Spec(A),WO) for any O-algebra A. It is not difficult
to check that the morphism r is surjective with pro-infinitesimal kernel.
Indeed Theorem 6.2 states that

The morphism r : RO →WO ×O Spec(κ) induces an isomorphism
rpf : Rpf

O → (WO ×O Spec(κ))pf on inverse perfections.
Hence, up to taking inverse perfections, one can identify Greenberg algebra
RO with the special fiber of the scheme of ramified Witt vectors WO.

The morphism r is deeply related to the scheme-theoretic version u
of Drinfeld’s functor (Proposition 5.6) and a great part of the paper is
devoted to the study of WO and u. In the unramified case the special
fiber of u is a universal homeomorphism and we can explicitly describe its
kernel (Proposition 5.12). The ramified case requires ad hoc constructions
(Proposition 5.14). All these results allow a better understanding of the
kernel of r (Lemma 6.3); in particular if O = W (κ) the kernel of r is
isomorphic to

Spec
(
κ[X0, X1, . . . ]/(X0, X

ph−1

1 , . . . , Xpi(h−1)

i , . . . )
)

where ph is the cardinality of κ.

Notation. For any morphism of O-schemes f : X → Y and any O-algebra
A (i.e., any homomorphism of commutative rings with unit O → A) we
write X(A) for HomO(Spec(A), X) and fA for the map X(A) → Y (A)
induced by f . For any O-scheme X, we write Xκ for its special fiber. If
f : Spec(B) → Spec(A), f∗ : A → B denotes the corresponding morphism
on global sections. We use bold math symbols for (ramified) Witt vectors
and important morphisms.

Acknowledgements. We thank an anonymous referee for suggesting new
references that inspired shorter proofs of the main results and a second
referee for careful reading of the paper and helpful comments.
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2. Greenberg algebras

Let O be a complete discrete valuation ring with field of fractions K of
characteristic 0 and perfect residue field κ of positive characteristic p. Let
π ∈ O denote a fixed uniformizing parameter and let e be the absolute
ramification index so that O '

⊕e−1
i=0 W (κ)πi as W (κ)-modules. Let W

(respectively, Wm) denote the ring scheme of p-typical Witt vectors of infi-
nite length (respectively, length m) over Spec(Z) and let Wκ (respectively,
Wm,κ) be its base change to Spec(κ).

The Greenberg algebra attached to the artinian local ring O/πnO, n ≥ 1,
is the κ-ring scheme Rn that represents the fpqc sheaf associated to the
presheaf

{affine κ-schemes} → {O/πnO-algebras},
Spec(A) 7→W (A)⊗W (κ) O/πnO;

it is unique up to unique isomorphism [10, Proposition A.1]. The explicit
description of Rn requires some work in general (we refer the interested
reader to [2, 8, 10]) but is easy when considering indices that are multiple
of e. Indeed Rme '

∏e−1
i=0 Wm,κ as κ-group schemes and for any κ-algebra

A it is

Rme(A) ' ⊕Wm(A)πi 'Wm(A)[T ]/(fπ(T )) 'Wm(A)⊗Wm(κ) O/πmeO,

where fπ(T ) ∈W (κ)[T ] is the Eisenstein polynomial of π; see [2, (3.6) and
Remark 3.7(a)], where O is denoted by R, and [2, Lemma 4.4] with R′ = O,
R = W (κ), m = n and Rn denoted by Rn. Hence the addition law on the
κ-ring scheme Rme is defined component-wise (via the group structure of
Wm,κ) while the multiplication depends on fπ(T ) and mixes indices.

The canonical homomorphisms O/πneO → O/πmeO, n ≥ m, induce
morphisms of ring schemes Rne → Rme [10, Proposition A.1(iii)] and the
Greenberg algebra associated with O is then defined as the affine κ-ring
scheme

RO = lim←−Rme

(see [2, §5] where RO is denoted by R̃). By construction RO '
∏e−1
i=0 Wκ as

κ-group schemes and

(2.1) RO(A) = W (A)[T ]/(fπ(T )) = W (A)⊗W (κ) O

for any κ-algebra A [2, (5.4)]; note that by [2, Lemma 4.4] the hypothesis
A = Ap in [2, (5.4)] is superfluous since lim←−m∈NRme = lim←−n∈NRn. We will
say that RO is an O-algebra scheme over Spec(κ) since, as a functor on
affine κ-schemes, it takes values on O-algebras.

Note that if O = W (κ), then RO 'Wκ, the κ-scheme of p-typical Witt
vectors.
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3. Ramified Witt vectors

Let O be a complete discrete valuation ring with field of fractions K and
finite residue field κ of cardinality q = ph.

For any O-algebra B one defines the O-algebra of ramified Witt vectors
WO(B) as the set BN0 endowed with a structure of O-algebra in such a
way that the map

(3.1)
ΦB : WO(B)→ BN0 ,

b = (bn)n∈N0 7→ (Φ0(b),Φ1(b),Φ2(b), . . . ) ,

is a homomorphism of O-algebras, where Φn(b) = bq
n

0 +πbq
n−1

1 + · · ·+πnbn
and the target O-algebra BN0 is the product ring on which O acts via
multiplication in each component. Proving the existence of WO(B) with
the indicated property requires some work; we refer to [11] for detailed
proofs and to [4] for a generalized construction.

Note that if π is not a zero divisor in B then ΦB is injective and indeed
bijective if π is invertible in B.

The above construction provides a ring scheme (and in fact an O-algebra
scheme) WO such that WO(A) = HomO(Spec(A),WO) =: WO(A) for any
O-algebra A, together with a morphism of O-algebra schemes Φ : WO →
AN0
O induced by the Witt polynomials

Φn = Φn(X0, . . . , Xn) = Xqn

0 + πXqn−1

1 + · · ·+ πnXn;

more precisely, if AN0
O =Spec(O[Z0, Z1, ...]), and WO=Spec(O[X0, X1, ...])

then Φ∗(Zn) = Φn. Let Φi : WO → A1
O denote the composition of Φ with

the projection onto the ith factor.
It is WZp = W ×Spec(Z) Spec(Zp), the base change of the scheme of p-

typical Witt vectors over Z, but, despite the notation, WO differs from
W×Spec(Z) Spec(O) in general.

Let K ′ be a finite extension of K with residue field κ′ = Fqr and ring
of integers O′, and let $ ∈ O′ be a fixed uniformizing parameter. We can
repeat the above constructions with $, qr in place of π, q and then get
a morphism of O′-algebra schemes Φ′ : WO′ → AN0

O′ defined by the Witt
polynomials

(3.2) Φ′n(X0, . . . , Xn) = Xqrn

0 +$Xqr(n−1)

1 + · · ·+$nXn.

By [6] there is a natural morphism of functors from the category of O′-
algebras to the category of O-algebras

u = u(O,O′) : WO →WO′ (Drinfeld’s functor)



Greenberg algebras 905

such that for any O′-algebra B the following diagram

WO(B)

ΦB
��

u // WO′(B)

Φ′B
��

BN0 Π′ // BN0

commutes, where the upper arrow is induced by u on B-sections and Π′
maps (b0, b1, . . . ) to (b0, br, b2r, . . . ). Further

u([b]) = [b], u(F rb) = F (u(b)), u(V b) = π

$
V (u(F r−1b)),

where [ · ], F , V denote, respectively, the Teichmüller map, the Frobenius
and the Verschiebung both in WO(B) and in WO′(B), and F r is the r-fold
composition of F with itself. By construction Drinfeld’s functor behaves
well with respect to base change, i.e. if O′′/O′ is another extension, then

(3.3) u(O,O′′) = u(O′,O′′) ◦ u(O,O′)

as functors from the category of O′′-algebras to the one of O-algebras.
More details on u and its scheme-theoretic interpretation will be given in
Section 5.

4. Perfection

A κ-scheme X is called perfect if the absolute Frobenius endomorphism
FX is an isomorphism. For any κ-scheme X one constructs its (inverse)
perfection Xpf as the inverse limit of copies of X with FX as transition
maps. It is known that the functor ( · )pf is right adjoint of the forgetful
functor from the category of perfect κ-schemes to the category of κ-schemes,
i.e., if ρ : Xpf → X denotes the canonical projection, there is a bjection

(4.1) Homκ(Z,Xpf) ' Homκ(Z,X), f 7→ ρ ◦ f

for any perfect κ-scheme Z; see [3, Lemma 5.15 and (5.5)] for more details
on this.

In the next sections we will need the following result.

Lemma 4.1. Let ψ : X → Y be a morphism of κ-schemes such that the
map ψA : X(A) → Y (A) is a bijection for any perfect κ-algebra A. Then
ψpf : Xpf → Y pf is an isomorphism and ψ is a universal homeomorphism.

Proof. By hypothesis

(4.2) Homκ(Z,X) ' Homκ(Z, Y ), f 7→ ψ ◦ f,

for any perfect κ-scheme Z. In particular,

Homκ(Y pf , Xpf) ' Homκ(Y pf , X) ' Homκ(Y pf , Y ) ' Homκ(Y pf , Y pf),
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where the first and third bijections follow from (4.1) and the second from
(4.2). By standard arguments the inverse of ψpf is then the morphism as-
sociated with the identity on Y pf via the above bijections. Consider further
the following commutative square

Xpf
ψpf

∼ //

ρ

��

Y pf

ρ

��
X

ψ
// Y

Since the canonical morphisms ρ are universal homeomorphisms [3, Re-
mark 5.4], the same is ψ. �

5. Results on ramified Witt vectors

In this section we study more closely ramified Witt vectors. Whenever
possible, we take a scheme-theoretic approach which also makes the func-
torial properties more evident and shortens the proofs as well. Let notation
be as in Section 3.

5.1. Frobenius, Verschiebung, Teichmüller maps. In this subsection
we present classical constructions in the scheme-theoretic language. Their
properties naturally descend from (5.1) and Remark 5.2.

Let B be an O-algebra. If B admits an endomorphism of O-algebras σ
such that σ(b) ≡ bq mod πB for any b ∈ B, then the image of the homo-
morphism ΦB in (3.1) can be characterized as follows

(5.1) (an)n∈N0 ∈ Im ΦB ⇐⇒ σ(an) ≡ an+1 mod πn+1B ∀ n ∈ N0;

see [11, Proposition 1.1.5]. We will apply this fact to polynomial rings
O[Ti, i ∈ I] with σ the endomorphism of O-algebras mapping Ti to T qi .

Lemma 5.1. Let σ : B → B be an endomorphism of O-algebras, $ ∈ B
an element such that π ∈ $B and f ∈ N. If σ(b) ≡ bq

f mod $B for any
b ∈ B, then

σ(Φfn(b)) ≡ Φf(n+1)(b) mod $fn+1B

for all b = (b0, b1, . . . ) ∈WO(B) and n ≥ 0.

Proof. Let b = (b0, b1, . . . ). Since Φf(n+1)(b) ≡ Φfn(bq
f

0 , b
qf

1 , . . . ) mod
πnf+1B, we are left to prove that

σ(Φfn(b)) ≡ Φfn(bq
f

0 , b
qf

1 , . . . ) mod $fn+1B.

We first note that σ(b) ≡ bqf mod $B implies that

(5.2) σ(bqs) ≡ bqf+s mod $s+1, ∀ s ≥ 0,
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(cf. [11, Lemma 1.1.1]). Hence by (5.2)

σ(Φfn(b)) = σ
(
bq
fn

0 + πbq
fn−1

1 + . . . πfnbfn
)

= σ(b0)qfn + πσ(b1)qfn−1 + . . . πfnσ(bfn)

≡ bq
(n+1)f

0 + πbq
f(n+1)−1

1 + · · ·+ πfnbq
f

fn = Φfn(bqf ),

where the equivalence holds modulo $fn+1B. �

Let B be an O-algebra, σ : B → B an endomorphism of O-algebras such
that σ(b) ≡ bq mod πB, and let h : Spec(B)→ AN0

O = Spec(O[Z0, Z1, . . . ])
be a morphism ofO-schemes; the latter is uniquely determined by (h0, . . . )∈
BN0 with hi = h∗(Zi). The morphism h factors through Φ : WO → AN0

O if
and only if (h0, h1, . . . ) ∈ Im ΦB. Hence we can rephrase (5.1) as follows:

(5.3) h factors through Φ
⇐⇒ σ(h∗(Zn)) ≡ h∗(Zn+1) mod πn+1B ∀ n ∈ N0.

Remarks 5.2.
(a) Note that if π is not a zero divisor in B and h factors through Φ,

then it factors uniquely. Indeed, let g, g′ : Spec(B) → WO be such
that Φ ◦ g = h = Φ ◦ g′ and let b, b′ ∈ WO(B) = WO(B) be the
corresponding sections. Then ΦB(b) = ΦB(b′) and one concludes
that g = g′ by the injectivity of ΦB [11, Lemma 1.1.3].

(b) Since the above constructions depend on π, it seems that one should
write Φπ and WO,π above. However, if $ is another uniformizing
parameter of O, let σ be the O-algebra endomorphism on B =
O[X0, X1, . . . ] mappingXi toXq

i . Then σ(Φ$,n(X.)) ≡ Φ$,n+1(X.))
mod $n+1B = πn+1B; hence by (5.3) and (a) one deduces the
existence of a unique morphism hπ,$ : WO,π → WO,$ such that
Φπ = Φ$ ◦ hπ,$. Similarly one constructs h$,π : WO,$ → WO,π
and (a) implies that h$,π ◦ hπ,$ and hπ,$ ◦ h$,π are the identity
morphisms.

(c) Note that if h : GO → AN0
O is a morphism of group (respectively,

ring) schemes with GO ' AN0
O or GO ' AmO as schemes, and there

exists a morphism g : GO → WO, unique by point (a), such that
h = Φ◦g, then g is a morphism of group (respectively, ring) schemes.
Indeed let µG, µW, µA be the group law on GO, WO and AN0

O respec-
tively. Since GO×OGO = Spec(C) with C reduced, in order to prove
that g ◦ µG = µW ◦ (g × g) : GO ×O GO → WO, it suffices to prove
that Φ ◦ g ◦ µG = Φ ◦ µW ◦ (g × g). Now Φ ◦ g ◦ µG = h ◦ µG =
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µA ◦ (h×h) = µA ◦ (Φ×Φ)◦ (g×g) = Φ◦µW ◦ (g×g). Similar argu-
ments work for the multiplication law when considering morphisms
of ring schemes.

As applications of (5.1) and (5.3) one proves the existence of the Frobe-
nius, Verschiebung and Teichmüller morphisms as well as of endomorphisms
λ : WO →WO for any λ ∈ O.

We now see how to deduce the existence of classical group/ring endo-
morphisms of WO from endomorphisms of AN0

O .

Proposition 5.3.
(i) Let AN0 = Spec(O[Z0, Z1, . . . ]) and let f be the endomorphism of

AN0 such that f∗(Zn) = Zn+1. There exists a unique morphism of
ring schemes F : WO →WO such that Φ ◦ F = f ◦Φ.

(ii) Let v be the endomorphism of AN0 = Spec(O[Z0, Z1, . . . ]) such that
v∗(Z0) = 0 and v∗(Zn+1) = πZn for n ≥ 0. Then there exists a
unique morphism of O-group schemes V : WO → WO such that
Φ ◦ V = v ◦Φ.

(iii) For λ∈O let fλ be the group endomorphism of AN0
O =Spec(O[Z0, ...])

such that f∗λ(Zn) = λZn. Then there exists a unique morphism of
O-group schemes λ : WO →WO such that Φ ◦ λ = fλ ◦Φ.

(iv) Let σ : A1
O → A1

O = Spec(O[T ]) be the morphism of O-schemes
such that σ∗(T ) = T q and let σ = (id, σ, σ2, . . . ) : A1

O → AN0
O . Then

there exists a unique morphism of O-schemes τ : A1
O → WO such

that Φ ◦ τ = σ. It is a multiplicative section of the projection onto
the first component Φ0 : WO → A1

O.

Proof. For proving (i)–(iii) we use (5.3) with B = O[X0, X1, . . . ], the ring
of global sections of WO, endowed with its unique lifting of Frobenius,
more precisely with the morphism of O-algebras σ mapping Xi to Xq

i . Let
X denote the vector (X0, X1, . . . ) ∈ WO(O[X0, X1, . . . ]) and set Xσ =
(Xq

0 , X
q
1 , . . . ).

The morphism F exists as soon as the condition in (5.3) is satisfied for
h = f ◦Φ, i.e., if Φn+1(Xσ) ≡ Φn+2(X) mod πn+1 for any n. This is evident
since Φn+2(X) = Φn+1(Xσ) + πn+2Xn+2.

The morphism V exists as soon as the condition in (5.3) is satisfies for
h = v◦Φ, i.e., if 0 ≡ πX0 mod πB and πΦn−1(Xσ) ≡ πΦn(X) mod πn+1B
for any n ≥ 1. The first fact is trivial while the second is evident since
Φn(Xσ) = Φn−1(Xq) + πnXn.

The morphism λ exists as soon as the condition in (5.3) is satisfied for
h = fλ ◦ Φ, i.e., if λΦn(Xσ) ≡ λΦn+1(X) mod πn+1 for any n. This is
evident since Φn(Xσ) ≡ Φn+1(X) mod πn+1 by Lemma 5.1 with f = 1,
$ = π.
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Uniqueness of F ,V ,λ follows by Remark 5.2(a). The fact that they are
group/ring scheme morphisms follows by Remark 5.2(c).

For (iv), we consider condition (5.3) for B = O[T ] and h = σ. It is
satisfied since h∗(Zn) = T q

n ; whence τ exists. Uniqueness follows again by
Remark 5.2(a) and multiplicativity of τ follows from multiplicativity of σ
as in Remark 5.2(c). Finally, by construction, τ is a section of Φ0. �

The ring scheme endomorphism F is called Frobenius and the O-scheme
endomorphism V is called Verschiebung. By a direct computation one
checks that for anyO-algebraA, the induced homomorphism FA : WO(A)→
WO(A) satisfies

(5.4) FA(a0, a1, . . . ) ≡ (a0, a1, . . . )q mod πWO(A),

and, if A is a κ-algebra,

(5.5) FA(a0, a1, . . . ) = (aq0, a
q
1, . . . )

holds. Further, both FA and VA are O-linear [11, §1] and

FAVA = π · idWO(A),(5.6)
VAFA = π · idWO(A), if πA = 0,(5.7)
a · VA(c) = VA(FA(a) · c), for all a, c ∈WO(A).

Finally V n
A WO(A) is an ideal ofWO(A) for any n > 0 where V n

A denotes the
n-fold composition of VA. Note that WO(A) = lim←−n∈NWO(A)/V n

A WO(A)
and if A is a semiperfect κ-algebra, i.e., the Frobenius is surjective on A,
then V n

A WO(A) = πnWO(A).
The morphism τ is called Teichmüller map. For any O-algebra B, we

have τB : B →WO(B), b 7→ [b] := (b, 0, 0, . . . ), since ΦB([b])=(b, bq, bq2
, . . . ).

Note that σ is not a morphism of O-group schemes and hence we can not
expect that τ is a morphism of group schemes.

Remark 5.4. For any subset I ⊂ N0 and any O-algebra A, let WO,I(A)
denote the subset of WO(A) consisting of vectors b = (b0, . . . ) such that
bi = 0 if i /∈ I. If J ⊂ N0 satisfies I ∩ J = ∅, then the sum in WO(A) of
a vector b = (b0, . . . ) ∈ WO,I(A) and a vector c = (c0, . . . ) ∈ WO,J(A) is
simply obtained by “gluing” the two vectors, i.e., b + c = d = (d0, . . . ) ∈
WO,I∪J(A) with di = bi if i ∈ I and di = ci if i ∈ J . For proving this fact,
since A can be written as quotient of a polynomial algebra over O with
possibly infinitely many indeterminates, we may assume that A is π-torsion
free. In this case d is uniquely determined by the condition

∑n
i=0 π

idq
n−i

i =
Φn(d0, . . . ) = Φn(b0, . . . ) + Φn(c0, . . . ) =

∑n
i=0 π

ibq
n−i

i +
∑n
i=0 π

icq
n−i

i ; since
for any index i either bi or ci (or both) is zero, the above choice of di works.
More generally, if I0, . . . , Ir, are disjoint subsets of N0, and bj are vectors
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in WO,Ij (A), then the sum b0 + · · ·+ br is obtained by “gluing” the vectors
bj . As immediate consequence, any element in WO(A) can be written as

(5.8) (a0, a1, . . . ) =
∞∑
i=0

V i
A[ai],

since V i[b] = (0, . . . , 0, b, 0, . . . ) ∈WO,{i}.

Lemma 5.5. Let B be a κ-algebra and consider the map

Bn →WO,n(B) := WO(B)/V n
BWO(B),

(b0, . . . , bn−1) 7→
n−1∑
j=0

[bj ]πj .

If B is reduced (respectively, semiperfect, perfect) the above map is injective
(respectively, surjective, bijective). Hence if B is semiperfect (respectively,
perfect), any element ofWO(B) = lim←−WO,n(B) can be written (respectively,
uniquely written) in the form

∑∞
j=0[bj ]πj.

Proof. By (5.6), (5.7), (5.4) and Remark 5.4 it is
n−1∑
j=0

[bj ]πj =
n−1∑
j=0

πj [bj ] =
n−1∑
j=0

V jF j [bj ] =
n−1∑
j=0

V j [bq
j

j ] = (b0, . . . , bq
n−1

n−1 , 0, . . . ),

where we have omitted the subscript B on F and V . Injectivity is clear when
B is reduced. Assume now B semiperfect and let b = (b0, b1, . . . ) ∈WO(B).
Then by Remark 5.4

b=(b0, ..., bn−1, 0, ...) + (0, ..., 0, bn, ...)∈(b0, ..., bn−1, 0, ...) + V nWO(B),

and by (5.8) and (5.5)

(b0, . . . , bn−1, 0, . . . ) =
n−1∑
j=0

V i[bi] =
n−1∑
j=0

V iF i[b1/q
i

i ] =
n−1∑
j=0

πi[b1/q
i

i ]

where b1/q
i

i denotes any qith root of bi, which exists since B is semiperfect.
Hence surjectivity is clear too. �

5.2. The Drinfeld morphism. Let K ′ denote a finite extension of K
with residue field κ′ = Fqr , ring of integers O′ and ramification degree
e; since we don’t work with absolute ramification indices in this section,
there is no risk of confusion with notation of Section 2. Let $ ∈ O′ be
a uniformizing parameter and write π = α$e with α a unit in O′. Let
Φ′n(X0, . . . , Xn) = Xqrn

0 + $Xqr(n−1)

1 + · · · + $nXn be the polynomials as
in (3.2) that define the morphism Φ′ : WO′ → AN0

O′ .
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Proposition 5.6. There exists a unique morphism of O′-ring schemes u =
u(O,O′) such that the following diagram

(5.9)

WO ×O SpecO′

Φ×idO′
��

u //WO′

Φ′
��

AN0
O′

Π′ // AN0
O′

commutes, where Φ × idO′ is the base change of Φ to Spec(O′) and Π′ is
the morphism mapping (x0, x1, . . . ) to (x0, xr, x2r, . . . ). For any λ ∈ O it
is λ ◦ u = u ◦ (λ × idO′), i.e., u induces homomorphisms of O-algebras
uB : WO(B)→WO′(B) for any O′-algebra B.

Proof. (cf. [6, Proposition 1.2]) Let B = O′[X0, . . . ] be the ring of global
sections of WO ×O SpecO′ and let σ be the endomorphism the O′-algebra
B mapping Xi to Xqr

i . Let h = Π′ ◦ (Φ × idO′) : Spec(B) → AN0
O′ . Then

by (5.3) the morphism of O′-schemes u exists as soon as σ(h∗(Zn)) ≡
h∗(Zn+1) mod $n+1B. By definition of h, this condition is equivalent to
σ(Φnr) ≡ Φ(n+1)r mod $n+1B, and the latter holds by Lemma 5.1 with
f = r and b = (X0, X1, . . . ) ∈ WO′(B). Hence u exists as morphism of
schemes. Uniqueness follows by Remark 5.2(a). Since Φ× idO′ and Π′ are
morphism of ring schemes, the same is u by the commutativity of (5.9) and
Remark 5.2(c).

Finally, since both λ ◦ u and u ◦ (λ× idO′) correspond to the endomor-
phism of AN0

O′ mapping Zn to λZrn on algebras, the result is clear. �

The morphism u is called the Drinfeld morphism. Note that the com-
mutativity of (5.9) says that for any O′-algebra B and any b ∈ WO(B)
it is

Φ′n(uB(b)) = Φnr(b).

Lemma 5.7. Let τ , τ ′ be the Teichmüller maps of WO,WO′ respectively.
Then τ ′ = u ◦ (τ × idO′).

Proof. Let A1
O = Spec O[T ] and AN0

O = Spec O[Z0, Z1, . . . ]. Let σ : A1
O →

AN0
O be the morphism in Proposition 5.3 mapping Zn to T q

n on algebras, and
let σ′ : A1

O′ → AN0
O′ be the analogous morphism for O′ mapping Zn to T qrn

on algebras. Then τ ′ is uniquely determined by the property Φ′ ◦ τ ′ = σ′.
Since Φ′ ◦u◦ (τ × idO′) = Π′ ◦ (Φ× idO′)◦ (τ × idO′) = Π′ ◦ (σ× idO′) = σ′,
the conclusion follows. �

Let B be an O′-algebra B. As a consequence of the above lemma and
O-linearity of the Drinfeld map uB, it is uB(

∑n
i=0[bi]πi) =

∑n
i=0[bi]πi and



912 Alessandra Bertapelle, Maurizio Candilera

hence

(5.10) uB

( ∞∑
i=0

[bi]πi
)

=
∞∑
i=0

[bi]πi,

where [bi] in the left-hand side (respectively, in the right-hand side) is the
Teichmüller representative of bi in WO(B) (respectively, in WO′(B)) and π
in the right-hand side is viewed as element of O′.

Lemma 5.8. Let F ,F ′ be the Frobenius maps on WO and WO′ respectively.
Then u ◦ (F r × idO′) = F ′ ◦ u, where F r is the r-fold composition of F .

Proof. Let f also denote the endomorphism of AN0
O′ = Spec(O′[Z0, Z1, . . . ])

associated with F ′ as in Proposition 5.3(i), which maps Zn to Zn+1 on
algebras, and let f r denote the r-fold composition of f . Since Φ′ ◦F ′ ◦u =
f ◦Φ′ ◦u = f ◦Π′ ◦(Φ× idO′) = Π′ ◦f r ◦(Φ× idO′) = Π′ ◦(Φ× idO′)◦(F r×
idO′) = Φ′ ◦ u ◦ (F r × idO′), the conclusion follows by Remark 5.2(a). �

Lemma 5.9. Let π
$

denote the group homomorphism of WO′ associated
with π

$ ∈ O
′ as in Proposition 5.3(iv). Then u ◦ (V × idO′) = π

$
◦V ′ ◦u ◦

(F r−1 × idO′).

Proof. We keep notation as in Proposition 5.3: v is the endomorphism of
the affine space AN0

O associated with V , similarly for v′,V ′ over O′; f is the
endomorphism associated with F and f π

$
the one associated with π

$
.

Note that Π′ ◦ (v × idO′) maps Z0 to 0 and Zn to πZrn−1 if n > 0. Now
Φ′◦u◦(V × idO′) = Π′◦(Φ× idO′)◦(V × idO′) = Π′◦(v× idO′)◦(Φ× idO′).
On the other hand,

Φ′◦
π

$
◦V ′◦u = f π

$
◦Φ′◦V ′◦u = f π

$
◦v′◦Φ′◦u = f π

$
◦v′◦Π′◦(Φ× idO′).

Hence

Φ′ ◦
π

$
◦ V ′ ◦ u ◦ (F r−1 × idO′) = f π

$
◦ v′ ◦Π′ ◦ (f r−1 × idO′) ◦ (Φ× idO′).

Since both Π′ ◦ (v × idO′) and f π
$
◦ v′ ◦Π′ ◦ (f r−1 × idO′) induce the endo-

morphism of O′[Z0, Z1, . . . ] mapping Z0 to 0 and Zn to πZrn−1 for n > 0,
they coincide and the conclusion follows by Remark 5.2(a). �

We now discuss properties of the Drinfeld morphism.

Lemma 5.10. Let B be a reduced κ′-algebra. Then Drinfeld morphism
induces an injective map uB : WO(B)→WO′(B) on B-sections.

Proof. Let Bpf denote the perfect closure of B, i.e., Bpf = lim−→i∈N0
Bi with

Bi = B and Frobenius b 7→ bp as transition maps. Since B is reduced, the
canonical map φ : B = B0 → Bpf is injective and thus the same is WO(φ).
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Hence, it suffices to consider the case where B is perfect. By Lemma 5.5, any
element b of WO(B) is of the form

∑∞
i=0[bi]πi, bi ∈ B, and hence uB(b) =∑∞

i=0[bi]πi by (5.10). Injectivity of uB is then clear since πi ∈ (V ′B)eiWO′(B)
and WO′(B) has no π-torsion. �

Note that if O′ 6= O and B is a non-reduced κ′-algebra, then uB is not
injective. Indeed let 0 6= b ∈ B such that bp = 0. Then by (5.6) and (5.7)
with O′ in place of O and Lemmas 5.7 and 5.9 we have

uB(VB[b]) = α$e−1V ′B([b]) = α(V ′B)e(F ′B)e−1([b]) = α(V ′B)e(0) = 0

if r = 1 and e > 1, and uB(VB[b]) = α$e−1V ′B(uB(0)) = 0 if r > 1.
More precise statements can be given in the unramified or totally ramified

cases.

5.2.1. The unramified case.

Lemma 5.11. Let O′/O be an unramified extension and let B be a κ′-
algebra. Then uB : WO(B) → WO′(B) is injective (respectively, surjective,
bijective) if B is reduced (respectively, semiperfect, perfect).

Proof. Let WO = SpecO[X0, X1, . . . ], WO′ = SpecO′[Y0, Y1, . . . ] and set
ui = u∗(Yi) ∈ O′[X0, . . . , ], so that Φ′m(u0, u1, . . . ) = Φmr(X0, X1, . . . ) by
commutativity of (5.9). We claim that

u0 = X0, um ≡ Xqm(r−1)
m mod (π) for m > 0.

Since u0 = X0 is clear by construction, only the second equivalence has to
be proved. We proceed by induction on m. First note that for any m ≥ 0

Φ(m+1)r(X0, . . . )

≡ Xq(m+1)r

0 + · · ·+ πmXq(m+1)r−m
m + πm+1Xq(m+1)r−m−1

m+1 mod (πm+2)

and
Φ′m+1(Y0, . . . ) = Y q(m+1)r

0 + · · ·+ πmY qr

m + πm+1Ym+1.

Assume that ui ≡ Xqi(r−1)

i mod (π) for 0 ≤ i ≤ m, then

πiuq
(m+1−i)r

i ≡ πiXq(m+1)r−i

i mod (πi+1+(m+1−i)r),

where i+ 1 + (m+ 1− i)r = m+ r + 1 + (r − 1)(m− i) ≥ m+ 2. Hence

0 = Φ′m+1(u0, . . . )− Φ(m+1)r(X0, . . . )

≡ πm+1um+1 − πm+1Xq(m+1)r−m−1

m+1 mod (πm+2),

thus the claim.
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Now, if B is any O-algebra, b = (b0, . . . ) ∈ WO(B) and uB(b) = c =
(c0, c1, . . . ) it is c0 = b0 and cm ≡ bq

m(r−1)
m mod πB. In particular, if B is a

κ′-algebra, it is

(5.11) cm = bq
m(r−1)
m , ∀ m ≥ 0.

This implies that uB is injective if B is reduced (as already seen in Lem-
ma 5.10), surjective if B is semiperfect and bijective if B is perfect. �

The above lemma has the following geometric interpretation.

Proposition 5.12. Assume that the extension O′/O is unramified. Then
Drinfeld’s morphism u restricted to special fibers is a universal homeomor-
phism with pro-infinitesimal kernel isomorphic to

Spec(κ′[X0, X1, . . . ]/(X0, . . . , X
qi(r−1)

i , . . . )

where qr is the cardinality of κ′.

Proof. The first assertion follows from Lemmas 4.1 and 5.11. By the very
explicit description of uκ in (5.11) one gets the assertion on the kernel. �

5.2.2. The totally ramified case. Let O′/O be a totally ramified ex-
tension of degree e > 1. Then κ′ = κ, O′ =

⊕e−1
i=0 O$i as O-module, and

π = α$e with α a unit in O′. Let B be a O′-algebra. We can not expect
uB : WO(B) → WO′(B) to be surjective, even if B is a perfect κ-algebra;
indeed (5.10) shows that $ is not in the image of uB. Note that uB is
a morphism of O-algebras and hence we can extend it to a morphism of
O′-algebras

(5.12)
ura
B = uB ⊗ id : WO(B)⊗O O′ →WO′(B),

e−1∑
i=0
bi ⊗$i 7→

e−1∑
i=0

uB(bi)$i,

with bi ∈WO(B). Since for any O-algebra A it is

(5.13) WO(A)⊗O O′ = WO(A)⊗O
e−1⊕
i=0
O$i =

e−1⊕
i=0

WO(A)$i,
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forgetting about the multiplication on WO(B)⊗O O′, ura
B is the group ho-

momorphism making the following diagram commute
(5.14)∏e−1

i=0 WO(B)

∏
ΦB

��

ura
B //WO′(B)

Φ′B

��

(bi)i_

��

� // ∑
i uB(bi)$i

_

��
(ΦB(bi)) � // ∑

i ΦB(bi)$i=
∑
i Φ′B(uB(bi))$i

∏e−1
i=0 B

N0 // BN0

We deduce from (5.13) that the product group scheme
∏e−1
i=0 WO, whose

group of A-sections is
⊕e−1

i=0 WO(A), for any O-algebra A, can be endowed
with a ring scheme structure that depends on the Eisenstein polynomial of
$ and mixes components. We denote by

∏$WO the resulting ring scheme
over O. In particular the functoriality of the maps ura

B says the existence of
a morphism of ring schemes over O′

ura :
$∏

WO ×O Spec(O′)→WO′

which induces ura
B on B-sections. More precisely, ura is a morphism of

schemes of O′-algebras. Let

(5.15) ura
κ :

$∏
WO,κ →WO′,κ.

be the restriction of ura to special fibers.
We can not expect that results in Lemma 5.11 and Proposition 5.12 hold

in the totally ramified case, but they hold for ura in place of u.

Lemma 5.13. Let O′/O be a totally ramified extension of degree e and let
B be a κ-algebra. If B is reduced (respectively, semiperfect, perfect) then the
homomorphism ura

B = uB⊗ id in (5.12) is injective (respectively, surjective,
bijective).

Proof. For the injectivity, as in the proof of Lemma 5.10, we may assume
that B is perfect. Let x =

∑e−1
i=0 bi ⊗ ωi with bi =

∑∞
j=0[bi,j ]πj ∈ WO(B)

by Lemma 5.5. Then by (5.10) it is ura
B (x) =

∑e−1
i=0

∑∞
j=0[bi,j ]πj$i =∑e−1

i=0
∑∞
j=0 αj(V ′B)ej+i[b̃i,j ] with α = π/$e a unit in O′, b̃i,j the qej+ith

power of bi,j and V ′B the Verschiebung on WO′(B). Hence injectivity fol-
lows.
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Now we prove surjectivity in the case where B is semiperfect. By Lem-
ma 5.5 any element of WO′(B) can be written in the form

∞∑
j=0

[aj ]$j =
e−1∑
i=0

∞∑
h=0

[ahe+i]πh$i/αh.

It suffices to check that
∑∞
h=0[ahe+i]πhα−h is in the image of ura

B for all i.
Note that the series

∑∞
h=0[ahe+i]⊗ πhα−h is in WO(B)⊗O O′ since

WO(B)⊗O O′ '
(

lim←−
m

WO(B)/πmWO(B)
)
⊗O O′

' lim←−
m

(
(WO(B)/πmWO(B))⊗O O′

)
= lim←−

m

WO(B)⊗O O′/πm
(
WO(B)⊗O O′

)
,

where the first isomorphism follows by Lemma 5.5 and the second by the
fact that O′ is a finite free O-module. Now by O′-linearity of ura

B and
Lemma 5.7

ura
B

( ∞∑
h=0

[ahe+i]⊗ πhα−h
)

=
∞∑
h=0

[ahe+i]πhα−h,

and we are done. �

We now study morphisms u and ura.

Proposition 5.14. Let O′/O be a totally ramified extension of degree e.
Then the morphism ura

κ in (5.15) is a universal homeomorphism with pro-
infinitesimal kernel isomorphic to

Spec
(
κ[Xn,i;n ∈ N0, 0 ≤ i < e]/(Xqn(e−1)+i

n,i )
)
.

Proof. The first assertion follows from Lemmas 4.1 and 5.13.
We now describe the kernel of the morphism of O′-group schemes
$∏

WO′ = SpecO′[Xn,i, n ∈ N0, 0 ≤ i < e] ura
−→WO′ = SpecO′[Y0, . . . ].

Set ura
m = ura∗(Ym) ∈ O′[Xn,i, n ∈ N0, 0 ≤ i < e] where ura∗ is the ho-

momorphism induced by ura on global sections. The kernel of ura is the
closed subscheme of

∏$WO whose ideal I is generated by the polynomials
ura
m,m ≥ 0. Let J be the ideal generated by the monomials Xqn(e−1)+i

n,i . We
want to prove that I coincides with J mod $. Both ideals admit a filtration
by subideals Is ⊂ I, Js ⊂ J where Is is generated by those ura

m with m ≤ s
and Js is generated by monomials Xqm(e−1)+j

m,j such that me + j ≤ s. It is
sufficient to check that Is coincides with Js mod $ for any s. We prove it
by induction on s.
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Clearly I0 = (ura
0 ) = (X0,0) = J0. Assume s > 0, write it as s = ne + i

with 0 ≤ i < e and assume ($, Im) = ($,Jm) for all m < s. Note that
Is = (Is−1, u

ra
s ) and Js = (Js−1, X

qn(e−1)+i

n,i ). Hence it is sufficient to prove
that

(5.16) ura
ne+i = ura

s ≡ αnX
qn(e−1)+i

n,i mod ($s, Js−1)

since α := π/$e is a unit in O′.
Note that

(5.17)
e−1∑
j=0

$jΦs(X·,j) = Φ′s(ura
0 , . . . ) = Φ′s−1((ura

0 )q, . . . ) +$sura
s ,

where the first equality follows by the commutativity of diagram (5.14)
and the second one by definition of the polynomials Φ′m. The left hand side
of (5.17) is sum of monomials of the form

$jπmXqs−m

m,j = $me+jαmXqs−m

m,j

with m ≤ s = ne+ i and 0 ≤ j < e.
If m > n, the $-order of the coefficient is bigger than s; similarly if

m = n and j > i. Hence
e−1∑
j=0

$jΦs,j ≡ $sαnXqs−n

n,i +
∑

me+j<s
$me+jαmXqs−m

m,j mod ($s+1),

and one concludes that

(5.18)
e−1∑
j=0

$jΦs,j ≡ $sαnXqs−n

n,i mod ($s+1, Js−1).

since Xqs−m

m,j = Xqne+i−m

m,j is a power of Xm(e−1)+j
m,j ∈ Js−1 when me + j <

ne+ i = s.
We now discuss the right hand side in (5.17).

(5.19) Φ′s−1((ura
0 )q, . . . ) +$sura

s

=
s−1∑
l=0

$l(ura
l )qs−l +$sura

s ≡ $sura
s mod ($s+1, Js−1),

where the last equivalence follows from the fact that ura
l ≡ 0 mod ($,Js−1)

by inductive hypothesis. We conclude then by (5.17), (5.18) and (5.19) that

$sura
s ≡ $sαnXqs−n

n,i mod ($s+1, Js−1),

whence claim (5.16) is true and the proof is finished. �
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5.2.3. The general case. Let Oun be the maximal unramified extension
of O in O′. Then by (3.3) uB = u(O,O′),B is the composition

(5.20) WO(B)
u(O,Oun),B−→ WOun(B)

u(Oun,O′),B−→ WO′(B)
and results on uB are usually deduced by a dévissage argument. We see
here below an example.

Lemma 5.15. Set O0 = W (κ) and let B be a reduced (respectively semiper-
fect, perfect) κ-algebra. Then the homomorphism

rB : W (B)⊗O0 O →WO(B)
induced by the Drinfeld functor is an injective (respectively, surjective, bi-
jective). In particular the natural map O →WO(κ) is an isomorphism.

Proof. Recall thatO0/Zp is unramified,W (B) = WZp(B) and the extension
O/O0 is totally ramified. The homomorphism in the lemma is then the
composition

(5.21) W (B)⊗O0 O
uun⊗idO−→ WO0(B)⊗O0 O

ura
−→WO(B),

where uun : u(Zp,O0),B : W (B) → WO0(B) and ura = u(O0,O),B ⊗ idO. Since
O is a free O0-module, it suffices to check the indicated properties for uun

and ura. These follow by Lemmas 5.11 and 5.13. �

5.2.4. The case π = $e. The description of uB is particularly nice
under the assumption that π = $e. Note that if O′/O is tamely ramified
the hypothesis is satisfied up to enlarging O′.

Lemma 5.16. Let B be a κ′-algebra and assume π = $e. Then the map
uB : WO(B)→WO′(B) factors through the subset WO′,eN0(B) consisting of
vectors b = (b0, . . . ) such that bj = 0 if e - j. If B is semiperfect its image
is WO′,eN0(B), thus in this hypothesis, WO′,eN0(B) is a subring of WO′(B).
If B is perfect then WO(B) is isomorphic to WO′,eN0(B).

Proof. By Lemma 5.11 the case e = 1 is clear. Since uB = u(O,O′),B is
the composition of the maps in (5.20) we may assume that O′/O is totally
ramified. Let WO = SpecO[X0, . . . ], WO′ = SpecO′[Y0, . . . ] and set ui =
u∗(Yi). It is

Φn(X0, X1, . . . ) = Φn−1(Xq
0 , . . . ) + πnXn for n ≥ 1,

Φ′n(Y0, Y1, . . . ) = Φ′n−1(Y q
0 , . . . ) +$nYn for n ≥ 1,

Φ′m(u0, u1, . . . ) = Φm(X0, X1, . . . ) for m ≥ 0.

One checks recursively that u0 = X0, ui ≡ 0 mod ($) if e - i and une ≡
Xqn(e−1)
n mod ($). Hence, if B is anyO′-algebra and b = (b0, . . . ) ∈WO(B),

then uB(b) = c = (c0, c1, . . . ) with c0 = b0, cne ≡ bq
e(n−1)
n mod $B and
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cj ∈ $B otherwise. In particular, if B is a κ′-algebra, it is cne = bq
e(n−1)
n for

any n ≥ 0 and zero otherwise. This implies that uB(WO(B)) ⊆WO′,eN0(B)
with equality if B is semiperfect. �

If κ = κ′ we have a better understanding of ura.

Lemma 5.17. Let O′/O be a totally ramified extension of degree e. Assume
π = $e and let B be a κ′-algebra. Then the homomorphism

ura
B : WO(B)⊗O O′ =

e−1⊕
i=0

WO(B)$i →WO′(B),

e−1∑
i=0
bi$

i 7→
e−1∑
i=0

uB(bi)$i,

bi ∈WO(B), maps the module WO(B)$i into WO′,i+eN0(B) and it is injec-
tive (respectively, surjective, bijective) if B is reduced (respectively, semiper-
fect, perfect).

Proof. We have seen in Lemma 5.16 that for any b ∈ WO(B) it is
uB(b) ∈ WO′,eN0(B); hence by (5.6) and (5.5) uB(b)$ = V FuB(b) ∈
VWO′,eN0(B) = WO′,1+eN0(B) and recursively uB(b)$i ∈ WO′,i+eN0(B).
Note further that the subsets eN0, 1 + eN0, . . . , e− 1 + eN0 form a partition
of N0 so that the sum

∑e−1
i=0 uB(bi)$i is simply obtained by “glueing” the

components of each vector uB(bi)$i = V iF iuB(bi) (see Remark 5.4). As
a consequence the injectivity (respectively, surjectivity) statement follows
from Lemma 5.10. �

6. The comparison result

Let O be a complete discrete valuation ring with residue field κ of car-
dinality q = ph, and absolute ramification e. Set O0 = W (κ). As seen in
Lemma 5.15 we may consider the Drinfeld map u : W (A) → WO(A) for
any κ-algebra A and hence we extend it to a natural homomorphism of
O-algebras

rA := u⊗ idO : W (A)⊗W (κ) O →WO(A).
In other words, due to the description of A-sections of RO in (2.1), there
exists a morphism of κ-ring schemes
(6.1) r : RO →WO,κ := WO ×O Spec(κ)
that coincides with rA on A-sections. Then Lemma 5.15 can be rewritten
as follows.

Lemma 6.1. If A is a reduced (respectively, semiperfect, perfect) κ-algebra
then rA : RO(A)→WO(A) is injective (respectively, surjective, bijective).

We can now prove the comparison result announced in the introduction.
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Theorem 6.2. The morphism r : RO → WO,κ defined in (6.1) induces
an isomorphism rpf : Rpf

O → Wpf
O,κ on perfections. Hence r is a universal

homeomorphism, thus surjective, and it has pro-infinitesimal kernel.

Proof. By Lemma 6.1 and 4.1 the morphism rpf is invertible and r is a uni-
versal homeomorphism. Further, r is a morphism of affine κ-group schemes
and

ker(r)(κ̄) = ker (RO(κ̄)→WO(κ̄)) ' ker
(
Rpf
O (κ̄)→Wpf

O (κ̄)
)

= ker(rpf)(κ̄) = {0},

where k̄ denotes an algebraic closure of κ and the bijection in the
middle follows by (4.1). Hence ker(r) is pro-infinitesimal by [5, V §3 Lem-
me 1.4]. �

We can say something more on the kernel of r.

Lemma 6.3.
(a) If O = W (κ) then r = u(Zp,W (κ)),κ and

ker r ' Spec
(
κ[X0, X1, . . . ]/(X0, X

ph−1

1 . . . , Xpi(h−1)

i , . . . )
)
.

(b) If κ = Fp, then r = ura
κ and

ker r ' Spec
(
Fp[Xn,i;n ∈ N0, 0 ≤ i < e]/(Xpn(e−1)+i

n,i ;n ∈ N0, 0 ≤ i < e)
)
.

(c) In general, ker(r) is extension of a pro-infinitesimal group scheme
as in Proposition 5.14 by the product of e pro-infinitesimal group
schemes as in (a).

Proof. Consider the extension O/Zp. Statements (a) and (b) follow from
Propositions 5.12 and 5.14. For the general case, note that (5.21) implies
that r, as morphism of κ-group schemes, is the composition

e−1∏
i=0

Wκ

∏
i
uκ
−→

e−1∏
i=0

WO0,κ
ura
κ−→WO,κ

where uk on the first arrow stays for u(Zp,O0),κ, whose kernel was described
in a), and ura

κ is the morphism in Proposition 5.14 for the ramified extension
O/O0. Hence the conclusion follows. �
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