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On the Stern–Brocot expansion of real numbers

par Christophe REUTENAUER

In memoriam Michel Mendès-France

Résumé. Le développement de Stern–Brocot d’un nombre réel est une suite
finie ou infinie de symboles l, r, signifiant « gauche » et « droite », qui re-
présente le chemin dans l’arbre de Stern–Brocot déterminé par ce nombre.
On montre que ce développement est périodique si et seulement si le nombre
est quadratique, positif, avec conjugué négatif; dans ce cas la représentation
de l’opposé du conjugué est obtenue par image miroir. Les pentes des suites
sturmiennes morphiques sont exactement ces nombres. Deux nombres ont le
même développement à partir d’un certain rang si et seulement s’ils sont équi-
valents sous l’action de SL2(Z). On obtient une relation d’adjacence pour les
formes quadratiques binaires indéfinies, qui mène à un variante de la théorie
des cycles de Gauss. Une bijection entre l’ensemble des mots de Lyndon sur
deux lettres et les classes d’équivalence de ces formes est obtenue.

Abstract. The Stern–Brocot expansion of a real number is a finite or infinite
sequence of symbols r, l, meaning “right” and “left”, which represents the path
in the Stern–Brocot tree determined by this number. It is shown that the
expansion is periodic if and only if the number is positive quadratic with a
negative conjugate; in this case the conjugate opposite’s expansion is obtained
by reversal. The slopes of morphic Sturmian sequences are these quadratic
numbers. Two numbers have ultimately the same exapansion if and only they
are SL2(Z)-equivalent. A related neighbouring relation for indefinite binary
quadratic forms leads to a variant of the Gauss theory of cycles. A bijection
is obtained between the set of binary Lyndon words and SL2(Z)-equivalence
of these quadratic forms.

1. Introduction

The Stern–Brocot tree is an infinite complete planar binary tree, whose
nodes are the positive rational numbers, see Figure 2.1. Each positive irra-
tional real number ξ determines an infinite path in the tree, starting from
the root. The path is coded by an infinite word on the alphabet l, r (l for
left, and r for right). It is this infinite word that we call the Stern–Brocot
expansion of ξ.

Manuscrit reçu le 24 janvier 2019, révisé le 18 juillet 2019, accepté le 25 octobre 2019.
2010 Mathematics Subject Classification. 11E16, 11A55.
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We show that this expansion is periodic if and only if ξ is quadratic
positive, with a negative conjugate ξ̄ (Theorem 3.1); one implication of
this result was known, in an equivalent form, to Hurwitz; we give a new
proof. A number satisfying the previous condition is called good. In this
case, the Stern–Brocot expansion of −ξ̄ is obtained by reversing that of ξ
(Corollary 3.8); this result is also due to Hurwitz, but we give a different
proof.

We give a new proof of a theorem of Allauzen: a number is good if and
only if it is the slope of some morphic Sturmian sequence (Theorem 5.1).

We consider indefinite binary real quadratic forms f(x, y) = ax2 + bxy+
cy2: a, b, c ∈ R, b2 − 4ac > 0; we shall say “form” for short. Such a form
is called good if a > 0, c < 0. We give a new proof of a result of Hur-
witz: each form is equivalent, under the action of SL2(Z) on x, y, to a good
form (Proposition 4.1). Then we show that in a given equivalence class of
forms, the good forms are on a cycle (fn), with fn+1(x, y) = fn(x+y, y) or
fn+1(x, y) = fn(x, x+y); the cycle is finite if and only if the form is propor-
tional to a form with integral coefficients (Theorem 4.3 and Corollary 4.6).
We obtain also an extension of a theorem of Lagrange: if for a form f , one
has f(x, y) = m for some relatively prime integers x, y, then m is the first
coefficient of some form in the cycle of the equivalence class of f .

We construct a natural bijection between the three following sets: the set
of Lyndon words on the alphabet {l, r}; the set of classes of real quadratic
numbers under SL2(Z)-equivalence; the set of equivalence classes of forms
(Theorem 6.1).

In the Appendix we review three results of Hurwitz, and give independent
proofs of two of them. Two positive numbers have ultimatelely the same
Stern–Brocot expansion if and only if they are equivalent under the action of
SL2(Z) (Theorem A.1). If |ξ− p

q | <
1
q2 , then p

q is a node on the Stern–Brocot
path of ξ, with an improvement due to Fatou and Grace (Theorem A.3).

Acknowledgments. Discussions with Valérie Berthé several years ago
proved to be helpful. And so were recent mail exchanges with Dominique
Perrin, Yann Bugeaud and Patrice Séébold. I got some help from Mélodie
Lapointe. I thank all of them.

2. Stern–Brocot expansion

2.1. The results of Graham, Knuth and Patashnik. In this section,
we follow the nice book “Concrete Mathematics” of Graham, Knuth and
Patashnik, [16, §4.5]. Let ξ be a positive irrational number. Let N(ξ) = ξ−1
if ξ > 1, and N(ξ) = ξ

1−ξ if ξ < 1. Note that N maps the set of positive
irrational real numbers into itself.
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Note also that the two cases are interchanged by inversion: if ξ > 1, then
N(ξ−1) = N(ξ)−1.

Define the numbers ξn by ξ0 = ξ and ξn+1 = N(ξn). The Stern–Brocot
expansion of ξ is the infinite word a0a1a2 · · · on the alphabet {l, r} such
that an = r if ξn > 1 and an = l if ξn < 1. For further use, note that the
Stern–Brocot expansion of any number ξn is anan+1an+2 · · · .

This infinite word is not ultimately constant, that is, it has l’s and r’s
at arbitrary large ranks: indeed, suppose for example that an = r for n ≥
n0; then ξn = ξn0 − (n − n0), which is negative for n large enough, a
contradiction; similarly, by replacing numbers by their inverses, one sees
that one cannot have an = l for n large enough.

All sequences in {l, r}N that are not ultimately constant are the Stern–
Brocot expansion of some positive irrational number. This follows because
the continued fraction of such a number is [n0, n1, n2, . . .] if and only its
Stern–Brocot expansion is rn0 ln1rn2 · · · , see [16, (6.140) p. 305]1.

To complete the picture, each rational number has a finite Stern–Brocot
expansion: for some n the number ξn is equal to 1 and the process stops.
Moreover, the correspondance between continued fractions and finite Stern–
Brocot expansions is as follows: each positive rational number has exactly
two continued fraction expansions [n0, n1, . . . , nk + 1] = [n0, n1, . . . , nk, 1]
with k ≥ 0, all ni in N, and ni > 0 for i = 1, . . . , k. Then the Stern–Brocot
expansion of this number is rn0 ln1rn2 · · · (r or l)nk .

Recall the left action of 2 by 2 matrices on complex numbers: for M =(
a b
c d

)
,

M · z = az + b

cz + d
.

Define the homomorphism µ from the free monoid {l, r}∗ into SL2(N) by

µ(r) = R = ( 1 1
0 1 ) , µ(l) = L = ( 1 0

1 1 ) .

One has R−1 =
( 1 −1

0 1
)
, L−1 =

( 1 0
−1 1

)
. Hence ξn+1 = R−1 · ξn if ξn > 1 and

ξn+1 = L−1 ·ξn if ξn < 1. Therefore ξn = R ·ξn+1 if ξn > 1 and ξn = L ·ξn+1
if ξn < 1. Thus ξn = µ(an) · ξn+1. It follows that

ξ = µ(a0a1 · · · an) · ξn+1.

The number ξ is recovered from its expansion as follows: let wn =
a0a1 · · · an−1, µ(wn) =

(
bn cn
dn en

)
, rn = bn+cn

dn+en
. Then

ξ = lim
n→∞

rn.

1This tight connection with continued fractions is perhaps the reason why the Stern–Brocot
expansion has not been considered so often for itself.
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Figure 2.1. The Stern–Brocot tree

Note that this formula is a variant of Formula (4.34) in [16]: we have con-
jugated the matrices and therefore the numerator and denominator in the
formula must be exchanged.

It follows also that the limit of bn
dn

and cn
en

is also ξ. Indeed, since the
determinant of µ(wn) is 1,

bn
dn
− bn + cn
dn + en

= bndn + bnen − bndn − cndn
dn(dn + en) = 1

dn(dn + en)

which tends to 0, since all coefficients of µ(wn) tend to ∞ (because the an
are not ultimately constant). Similarly for cn

en
.

In order to understand better the Stern–Brocot expansion, recall the
Stern–Brocot tree. This is an infinite complete planar binary tree, whose
nodes are the positive rational numbers. The root is 1. The nodes on
the two extreme right and left branches are respectively 1, 2, 3, 4, . . . and
1, 1/2, 1/3, 1/4, . . . in this order. To compute the other nodes, consider such
a node: the path originating at this node and towards the root has then
right and left steps; take the first right step and the first left step, and the
respective labels p1/q1, p2/q2 of their target; then the label p/q of our node
is the mediant of these two numbers, that is p = p1 + p2, q = q1 + q2. For
example, see Figure 2.1: 3/7 is the mediant of 1/2 and 2/5 2.

2The lazy addition of fractions.
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Figure 2.2. The two cases of the path from a node towards
the root

More precisely, one has: let w ∈ {l, r}∗ be the word coding the path from
the root towards the node x considered (with l for “left” and r for “right”).
Then

µ(w) =
(
p1 p2
q1 q2

)
.

See Figure 2.2, with the two cases. For example, x = 3/7, w = llrr and
µ(w) = ( 1 2

2 5 ).
Now each positive rational number appears exactly once on the tree.

Moreover, each positive irrational number ξ determines an infinite path on
the tree as follows: it starts at the root 1, and if it passes through a node
labelled p/q, it continues towards the left child if ξ < p/q and towards the
right child if ξ > p/q.

It turns out that this infinite path, once coded by the letters l, r, is
exactly the Stern–Brocot expansion of ξ as defined above.

In this path, all convergents of ξ appear: they are the label of the nodes
which are followed by a node which is at a left or right turn on the path.
The set of all labels on the path turns out to be the set of semi-convergents
of ξ. For example, if the path is llrrrl · · · , the two first convergents are 1/2
and 3/7, see Figure 2.1.

Recall that these numbers are defined as follows: suppose that the ex-
pansion of ξ (irrational) into continued fraction is ξ = [n0, n1, n2, . . .],
ni ∈ Z, ni > 0 for i > 0. Then the convergents are all the rational
numbers [n0, . . . , nk], whereas the semi-convergents are all the numbers
[n0, . . . , nk−1, j], k ≥ 0, j = 1, . . . , nk.
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Note that the Stern–Brocot tree has an alternative construction. Define
the n-th Stern–Brocot sequence SBn recursively by SB−1 = 0

1 ,
1
0 and for

n ≥ −1, SBn+1 is obtained by inserting their mediant between any two
consecutive fractions in SBn. Clearly, SBn has 2n+1 + 1 terms. The first
sequences (n = −1, 0, 1, 2, 3) are
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The Stern–Brocot tree is then constructed in [16] as follows: the nodes at
level n ≥ 0 are the elements of SBn which are not in SBn−1; for example,
the root is 1

1 , its left and right children are 1
2 and 2

1 , the left and right
children of 1

2 are 1
3 and 2

3 , and so on.
For further use, we write

ξ = SB(s),

if s is a finite or infinite word on the alphabet {l, r} and ξ the real number
having s as Stern–Brocot expansion.

2.2. Historical remarks. Constructions that are equivalent to the Stern–
Brocot expansion have been considered previously, under other names.

In 1894, Hurwitz [17] defines the Characteristik of a real number; the con-
struction uses the so-called Farey intervals; it is explained in the Appendix,
with three theorems due to him.

The Stern–Brocot expansion has also been considered in 1973 by
Raney [26]; he calls it L,R-sequence expansion. He constructs for each in-
tegral Möbius transformation a transducer that computes the expansion
of the image of any real number under this transformation; motivation for
this is to compute the continued fractions expansion of the image, knowing
that one easily passes from the Stern–Brocot expansion to the continued
fractions.

The Stern–Brocot expansion is also mentioned in [6, p. 36] under the
name Farey expansion; the authors develop a similar theory of sign se-
quences for finite and infinite Christoffel words [6, p. 36] (the latter are in
bijection with positive reals).

Finally, it is called Stern–Brocot representation by Niqui [24, p. 357] who
extends Raney’s results to quadratic maps.
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3. Periodic expansion

Theorem 3.1. Let ξ be a positive irrational real number. Its Stern–Brocot
expansion is periodic if and only if ξ is quadratic and if its conjugate ξ̄ is
negative.

This result is of course similar to the theorem of Galois asserting that a
number ξ has a periodic expansion into continued fractions if and only if ξ is
quadratic, ξ > 1 and ξ̄ ∈ (−1, 0). The condition for periodic Stern–Brocot
expansions is even nicer, and the proof becomes very natural.

One implication of this result is equivalent to result of Hurwitz [18,
Satz 24, p. 112]. The periodicity in his statement is somewhat hidden by
the fact that the two first letters in the expansion are useless. The proof
we give is self-contained and completely different of the proof by Hurwitz.

Note also that one could certainly deduce this theorem from results on
Sturmian words; see Allauzen [2, Thm. 3] and [22, Exercise 2.3.4], attributed
to Droubay, Justin, Pirillo.

Let us call good a number ξ that is positive, quadratic and such that its
conjugate is negative; these numbers appear implicitly in Hurwitz’s arti-
cle [18]. They appear also in [2]: Allauzen calls them the Sturmian numbers
of the first kind, see [2, Thm. 3].

Denote A the set of good numbers.

Lemma 3.2. The mapping N is a bijection from A into itself.

Proof. Let ξ ∈ A. Clearly, N(ξ) is positive and quadratic.
If ξ > 1, then N(ξ) = ξ̄ − 1 is negative, since ξ̄ is negative. Hence

N(ξ) ∈ A.
Observe that inversion maps A into itself. Moreover N(ξ)−1 = N(ξ−1).

Hence if ξ < 1, the previous case shows that N(ξ) ∈ A too.
Thus N maps A into itself.
Let ν = N(ξ). We show that ξ > 1 if and only if −ν̄ > 1. This will

imply that N is injective, since x− 1 and x
1−x are both injective functions.

Suppose indeed that ξ > 1; then ν = ξ − 1, hence ν̄ = ξ̄ − 1 < −1 (since
ξ̄ < 0), so that −ν̄ > 1. Suppose now that ξ < 1; then ξ−1 > 1, so that
by what we have just shown, −N(ξ−1) > 1; since N(ξ−1) = N(ξ)−1, we
obtain −ν̄−1 = −ν−1 = −N(ξ)−1 = −N(ξ−1) > 1, which implies that
−ν̄ = (−ν̄−1)−1 < 1.

To prove surjectivity, let ν ∈ A. If −ν̄ > 1, let ξ = ν + 1; then ξ > 1 > 0
(since ν > 0), and ξ̄ = ν̄+1 < 0; hence ξ ∈ A andN(ξ) = ξ−1 = ν. Suppose
now that −ν̄ < 1; then −ν−1 = (−ν̄)−1 > 1 (because ν ∈ A ⇒ ν̄ < 0,
−ν̄ > 0). Then applying what precedes to ν−1 ∈ A, we see that there exists
ξ ∈ A such that N(ξ) = ν−1; we obtain that ξ−1 ∈ A and N(ξ−1) = ν. �
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Lemma 3.3. Let ∆ be an integer. The set of triples (a, b, c) of integers,
such that b2 − 4ac = ∆ and that ac < 0, is finite.

Proof. Under the assumptions, one has b2 − 4ac = |b|2 + 4|a||c|. Hence the
number of triples (|a|, |b|, |c|) is finite. This implies the lemma. �

Lemma 3.4. Suppose that irrational ξ satisfies an integer quadratic equa-
tion aξ2 + bξ+ c with discriminant b2−4ac = ∆. Let x = ξ−1 or x = ξ

1−ξ .
Then x satisfies an integer quadratic equation a′x2 + b′x + c′ = 0 with the
same discriminant. Moreover, if ac < 0, and if either ξ > 1 and x = ξ − 1,
or 0 < ξ < 1 and x = ξ

1−ξ , then a
′c′ < 0.

Proof. Suppose first that x = ξ − 1. Then 0 = a(x + 1)2 + b(x + 1) + c =
ax2 + (2a + b)x + a + b + c. The discriminant of this latter polynomial is
(2a + b)2 − 4a(a + b + c) = b2 − 4ac. Suppose now that ac < 0 and ξ > 1;
then the other root is < 0 (because ac < 0) and a, a+ b+ c have opposite
sign (because 1 lies between the two roots). Since a′ = a, c′ = a+ b+ c, we
obtain a′c′ < 0.

Note that ξ−1 satisfies the quadratic equation with coefficients c, b, a
with the same discriminant. Then the previous arguments applied to ξ−1

complete the proof, since x−1 = ξ−1 − 1. �

Lemma 3.5. Let M be a 2 by 2 matrix whose entries are natural numbers.
Suppose that M /∈ NI2 and that M has a real irrational fixpoint ξ for the
action of Section 2. Then M has a unique positive and a unique negative
fixpoint. The positive one is a good number.

Proof. LetM =
(
a b
c d

)
. Then ξ = M ·ξ is equivalent to ξ = aξ+b

cξ+d , which may
be rewritten cξ2 +(d−a)ξ−b = 0. Suppose that c = 0; then (d−a)ξ−b = 0
and, since ξ is irrational, we must have d = a and b = 0, a contradiction
sinceM is not a scalar matrix. Similarly, if b = 0, then dividing by ξ (which
is 6= 0), we obtain cξ + d− a = 0, and we reach a contradiction, too. Thus
b, c are both nonzero and therefore the previous quadratic equation has
two real solutions, and their product is negative. Hence the positive one is
good. �

Proof of Theorem 3.1.

“⇒”. Suppose that ξ is quadratic and that ξ̄ is negative. Then ξ satisfies an
equation aξ2 + bξ+ c, as in Lemma 3.4; also, ac < 0, since ξ > 0 and ξ̄ < 0.
Define ξn as in Section 2: for each n, ξn+1 = N(ξn). By Lemma 3.4. all the
ξn satisfy such an equation, with the same discriminant and the condition
on the two extreme coefficients. By Lemma 3.3, these equations are finitely
many. Hence two of the ξn are equal: ξn+p = ξn for some positive p; in other
words, Nn+p(ξ) = Nn(ξ). Since N is a bijection by Lemma 3.2, we deduce
that Np(ξ) = ξ. Thus the Stern–Brocot expansion of ξ is periodic.
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“⇐”. It follows from Section 2 that for any n, ξ = M · ξn for some M ∈
SL2(N), which is a product of L and R’s; henceM has at least three nonzero
coefficients and therefore M is not a scalar matrix.

Suppose now that the Stern–Brocot expansion of ξ is periodic. Then
we have ξ = ξn for some n > 0. Therefore ξ = M · ξ. We conclude with
Lemma 3.5, since ξ is irrational. �

The following corollary is equivalent to the theorem of Lagrange charac-
terizing ultimately periodic continued fractions. We give a proof since it is
very short.
Corollary 3.6. The Stern–Brocot expansion of an irrational real positive
number ξ is ultimately periodic if and only if ξ is quadratic.
Proof. If ξ has an ultimately periodic expansion, then ξn = ξp for some
n < p. So the expansion of ξn is periodic and by the theorem ξn is quadratic.
We have ξ = M ·ξn for some matrixM in SL2(N). Thus ξ is quadratic, too.

Conversely suppose that ξ is quadratic. Let a0a1a2 · · · be its Stern–
Brocot expansion and Mn = µ(a0 · · · an−1). We have ξ = Mn · ξn. Hence
ξn = M−1

n · ξ and therefore ξ̄n = M−1
n · ξ̄. Let Mn =

(
bn cn
dn en

)
. We know that

the limit of bn/dn and cn/en is ξ. Since M−1
n =

(
en −cn
−dn bn

)
we have

ξ̄n = enξ̄ − cn
−dnξ̄ + bn

= en
−dn

ξ̄ − cn
en

ξ̄ − bn
dn

.

The latter fraction tends to ξ̄−ξ
ξ̄−ξ = 1. Hence ξ̄n is negative for n large enough

and ξn is good. Thus ξn has a periodic expansion by the theorem, and so ξ
has an ultimately periodic expansion. �

Corollary 3.7. Each real quadratic number is equivalent to a good number
under the action of SL2(Z).
Proof. This follows from the beginning of the previous proof if the number
is positive. In general, any number is equivalent to a positive one, by adding
a large enough integer n. �

We conclude this section by a result which is an analogue of a well-known
result for continued fractions; it is due to Hurwitz ([18, Satz 4, p. 112]).
Corollary 3.8. Suppose that ξ has a periodic Stern–Brocot expansion w∞,
w ∈ {l, r}∗. Let ξ̄ be its conjugate, as quadratic number. Then −ξ̄ has the
expansion w̃∞, where w̃ is the reversal of w.
Proof. The real number α > 0 whose expansion is w̃∞ satisfies α = P · α,
where P = µ(w̃). We have to prove that α = −ξ̄. Let M = µ(w). Then
P is the product of the matrices L and R in reverse order of the product
giving M .
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Consider the anti-automorphism τ of 2 by 2 matrices which is transpo-
sition followed by conjugation by the permutation matrix ( 0 1

1 0 ). It sends
each matrix

(
a b
c d

)
onto ( d bc a ). Therefore it fixes the matrices L and R. This

shows that P = τ(M).
Let M =

(
a b
c d

)
; it follows from the previous arguments that P = ( d bc a ).

Now ξ = M · ξ, that is cξ2 + (d − a)ξ − b = 0 and α = P · α, that is
cα2 + (a − d)α − b = 0. Note that the roots of the first polynomial (that
is, ξ and ξ̄) are the opposite of the roots of the second. Since each of these
polynomials has roots of opposite sign, we deduce that the positive root
of the second is the opposite of the negative root of the first. That is,
α = −ξ̄. �

4. Indefinite binary quadratic forms

4.1. Good forms. We consider binary quadratic forms f(x, y) = ax2 +
bxy + cy2. We assume that they have real coefficients, and that they are
indefinite: that is, their discriminant d(f) = b2− 4ac is positive. Call roots
of f the roots of f(x, 1) = 0. We always assume that the form has two
irrational roots. For short, we call this a form.

The group GL2(Z) acts on the right on forms by (f ·M)(x, y) = f(px+
qy, rx + sy), when M = ( p qr s ) ∈ GL2(Z). Note that f(px + qy, rx + sy) =
a(px + qy)2 + b(px + qy)(rx + sy) + c(rx + sy)2 = (ap2 + bpr + cr2)x2 +
(2apq + bps + bqr + 2crs)xy + (aq2 + bqs + cs2)y2 = f(p, r)x2 + (2apq +
bps+ bqr + 2crs)xy + f(q, s)y2.

Two forms are (properly) equivalent if they are in the same orbit under
the action of SL2(Z); in the sequel,“equivalent” will mean “properly equiv-
alent”. If the two forms lie in the same orbit under the action of GL2(Z),
they are called improperly equivalent. Note that if f, g are properly or im-
properly equivalent, then they have the same discriminant (see [11, p. 66],
[5, p. 4]).

We say that a form f(x, y) = ax2 + bxy+ cy2 is good if a > 0 and c < 0.
Note that then its roots have opposite sign: f has a positive and a negative
root. This condition appears already in the article of Hurwitz [18, Satz 16,
p. 100].

Call more generally positive (resp. negative) root of a (not necessarily
good) form f(x, y) = ax2+bxy+cy2 the root −b+

√
b2−4ac

2a (resp. −b−
√
b2−4ac

2a );
if f is good, since ac < 0, this coincides with the previous terminology.

Proposition 4.1. Each form is equivalent to a good form.

This result is due to Hurwitz ([18, Satz 17, p. 100]); we give a different
proof.
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Lemma 4.2 ([11, Thm. 72 p. 99]).
(i) Let M = ( p qr s ) ∈ GL2(Z) and let f, g be two quadratic forms such

that f = g ·M . If u, v are the roots of f , then M · u,M · v are the
roots of g.

(ii) With the same notations, if M is in SL2(Z) and if u is the positive
root of f , then M · u is the positive root of g.

Note that the denominators are nonzero, since u, v are irrational.

Proof.

(i). One has g(pu+q, ru+s) = (g·M)(u, 1) = f(u, 1) = 0, hence g(pu+q
ru+s , 1) =

0. Thus M.u is a root of g. Similarly for M.v.

(ii). We show that if M ∈ GL2(Z), f = g ·M and u is the positive root
of f , then M.u is the positive or negative root of g, depending if M has
determinant 1 or −1. Since GL2(Z) is generated by the two matrices R and
J = ( 0 1

1 0 ), it is enough to show this for these two matrices.
Let g = ax2 + bxy + cy2. For the first matrix, one has f(x, y) = g(x +

y, y) = a(x+ y)2 + b(x+ y)y+ cy2 = ax2 + (2a+ b)xy+ (a+ b+ c)y2; then,
letting d be the discriminant, u = −2a−b+

√
d

2a and M.u = u + 1 = −b+
√
d

2a ,
the positive root of g.

For the second matrix, f(x, y) = g(y, x) = cx2+bxy+ay2, u = −b+
√
d

2c and
M.u = 1

u = 2c
−b+
√
d

= 2c(−b−
√
d)

(−b+
√
d)(−b−

√
d) = 2c(−b−

√
d)

b2−b2+4ac = −b−
√
d

2a , the negative
root of g. �

Proof of Proposition 4.1. Let f(x, y) = ax2 +bxy+cy2 be a form, with α, β
its roots. If the roots have opposite sign, then ac < 0 and the form is good,
unless a < 0 and c > 0; but in this case, f(y,−x) = cx2 − bxy + ay2 is
equivalent to f , and good.

Suppose that the roots α, β are both positive. They are distinct, so have
two different Stern–Brocot expansions, say a0a1 · · · , b0b1 · · · respectively.
We argue by induction on the rank of the first letter in these expansions
that is different.

If they differ at rank 0, that is a0 6= b0, then we may assume that β > 1
and α < 1. Then the form f(x+y, y) has roots α−1, β−1 and is equivalent
to f ; since these numbers have opposite sign, we are done by the previous
case.

Suppose that a0 = r = b0; then α, β > 1, hence the Stern–Brocot expan-
sion of α1 (resp. β1) is a1a2 · · · (resp. b1b2 · · · ). Then f(x+y, y) is equivalent
to f and has roots α1 = α− 1 and β1 = β− 1; thus f(x+ y, y) is by induc-
tion equivalent to a good form, and so is f . Suppose on the other hand that
a0 = l = b0; then f is equivalent to f(x, x+ y), whose roots are α1 = α

1−α
and β1 = β

1−β : indeed, f(α1, α1 + 1) = f( α
1−α ,

1
1−α) = 1

1−αf(α, 1) = 0; the
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Stern–Brocot expansion of α1 (resp. β1) is a1a2 · · · (resp. b1b2 · · · ), so that
f(x, x+ y) is by induction equivalent to a good form, and so is f .

Suppose now that the roots are both negative. Then the roots of
f(x− hy, y) are α + h, β + h, which are positive for h large enough; since
for h integer, f is equivalent to f(x − hy, y), we are done by the previous
cases. �

4.2. Cycles of forms. Let f(x, y) = ax2 + bxy + cy2. We write f r−→ g if
a+ b+ c < 0 and g(x, y) = f(x+ y, y), that is, g = f ·R. We write f l−→ g if
a+ b+ c > 0 and g(x, y) = f(x, x+ y), that is, g = f · L. We write f → g

if f r−→ g or f l−→ g and say that g is a right neighbour of f ; we write f ∗−→ g
if there is a →- chain from f to g. Note that

(4.1)
f(x+ y, y) = ax2 + (2a+ b)xy + (a+ b+ c)y2,

f(x, x+ y) = (a+ b+ c)x2 + (b+ 2c)xy + cy2.

It is useful to denote f = [a, b, c] for f(x, y) = ax2 + bxy + cy2. We
then see that [a, b, c] r−→ [a, 2a + b, a + b + c] when a + b + c < 0, and
[a, b, c] l−→ [a+ b+ c, b+ 2c, c] when a+ b+ c > 03.

Note also that one has never a + b + c = 0, since it is always assumed
that f has only irrational roots; hence one has either f r−→ g or f l−→ g, for
some g, and these cases are mutually exclusive.

Theorem 4.3.
(i) If f is good and f → g, then g is good.
(ii) If g is good, there is a unique good f such that f → g.
(iii) If f, g are good and equivalent, then f ∗−→ g or g ∗−→ f .

We begin by prove a result of independent interest.

Proposition 4.4. Suppose that f, g are good forms and that g = f ·M for
some M ∈ SL2(Z). Then one of the four matrices M,M−1,−M,−M−1 is
in SL2(N).

Lemma 4.5. There exist no integers a, b, c, p, q, r, s, with qr− ps = 1, and
such that a, p, q, r, s > 0, c < 0, ap2− bpr+cr2 > 0 and aq2− bqs+cs2 < 0.

Proof. Suppose the contrary. One has bpr < ap2 + cr2 and bqs > aq2 + cs2.
Hence aq2+cs2

qs < b < ap2+cr2

pr . It follows that aq2pr+ cs2pr < ap2qs+ cr2qs;
thus apq(qr−ps) < crs(qr−ps) and 0 < apq < crs < 0, a contradiction. �

3To memorize it in the case where f is good, recall that the first coefficient must be > 0 and
the last coefficient < 0.
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Proof of Proposition 4.4. Suppose that the coefficients ofM are all nonzero.
Their sign defines a matrix S in {+,−}2×2, and the latter set has 16 ele-
ments. It is enough to show that S is one of the four matrices(+ +

+ +
)
,
(− −
− −

)
,
(+ −
− +

)
,
(− +

+ −
)
,

since in the first (resp. second, resp. third, resp. fourth) case,M (resp. −M ,
resp. M−1, resp. −M−1) is in SL2(N).

It is not possible that only one coefficient of M is negative; indeed, if for
example, S =

(− +
+ +

)
, then the determinant of M is ≤ −2. The three other

cases are similar, as are the cases where only one coefficient is positive.
There remain four cases; even only two, if one take opposites, noting that

g = f ·M is equivalent to g = f · (−M). In these two cases, S is one of the
two matrices (− −

+ +
)
,
(− +
− +

)
.

Suppose that S is the first matrix. Then we may write M = (−p −qr s )
with p, q, r, s > 0. Let f(x, y) = ax2 + bxy + cy2. Then, by a calculation
made at the beginning of Subsection 4.1, the first and the last coefficients
of g are f(−p, r) = ap2 − bpr + cr2 and f(−q, s) = aq2 − bqs+ cs2 and we
obtain a contradiction using Lemma 4.5.

Suppose that S is the second matrix. Then M =
(
−p q
−r s

)
. The first and

the last coefficients of g are ap2 + bpr + cr2 and aq2 + bqs + cs2 and we
obtain a contradiction using the same lemma, with b replaced by −b.

The cases where one coefficient of M vanishes is treated as follows. Sup-
pose that M = ( p 0

r s ) or M = ( p q0 s ); then, replacing M by its opposite if
necessary, we may assume that p = s = 1 and then it is readily seen that
M or M−1 is in SL2(N).

If M = ( 0 q
r s ), then we see that the first coefficient of g is negative (it

is cr2), a contradiction; and if M = ( p qr 0 ), then the last coefficient of g is
positive (it is aq2), a contradiction again. �

Proof of Theorem 4.3.

(i). This follows from (4.1).

(ii). We prove that f exists and is unique. Let g = ax2 + bxy + cy2; then
a > 0, c < 0. Then g · R−1 = ax2 + (−2a + b)xy + (a − b + c)y2 and
g · L−1 = (a − b + c)x2 + (b − 2c)xy + cy2. Since g has no rational root,
a− b+ c is nonzero and therefore exactly one of R−1.g or L−1.g is good.

(iii). This follows from the previous proposition since one has equivalence
between the four equalities: g = f · M , g = f · (−M), f = g · M−1,
f = g · (−M−1), since SL2(N) is generated as monoid by R and L, and by
the matrix definition of →. �
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Consider the directed graph whose vertices are the good forms and whose
edges are f → g with → as previously defined. Thanks to the theorem, the
restriction of this graph to the classes may be precisely described.

Corollary 4.6. In each equivalence class of forms, the good forms are on
an infinite or a finite cycle. The cycle is finite if and only if the forms in
this class are proportional to an integral form.

Hurwitz constructs a cycle quite differently; see [18, §7 p. 101–104]. I
could not verify if his cycles coincide with the cycles constructed here;
however, the very simple neighbouring relations f → g seem not apparent
in his article.

Proof. It follows from the theorem that for each equivalence class of forms,
there exists good forms (fn)n∈Z such that fn → fn+1 for any n and that
the good forms in the class are exactly the fn. If the fn are distinct, the
cycle is infinite.

If the fn are not all distinct, then we have by the theorem
f1 → f2 → . . .→ fp → f1,

for some p ≥ 1. Thus we have f1 = f1.M for some matrix M ∈ SL2(N) and
it follows then from Lemma 4.2(ii) that each root ξ of f1 satisfies ξ = ξ.M ;
thus the two roots of f1 are conjugate quadratic numbers and it follows that
f1 is proportional to the integral form ax2 +bxy+cy2, where ax2 +bx+c is
a nonzero integral polynomial having these two numbers as roots. It follows
that each form in the cycle is proportional to an integral form.

Conversely, if f1 is proportional to an integral form, we may assume that
f1 is integral; then, since the fn have all the same discriminant, they are
finitely many by Lemma 3.3, hence not distinct. �

As an example, consider the good form ax2 + bxy + cy2 = x2 + xy − y2,
represented by [1, 1,−1]. Recall the rules before Theorem 4.3. Since here
a+ b+ c > 0, we have [1, 1,−1] l−→ [1,−1,−1]; now the sum of coefficients
of the latter form is < 0, so that [1,−1,−1] r−→ [1, 1,−1]: the cycle is of
length 2.

Take now the form [1, 2,−2]. We obtain

[1, 2,−2] l−→ [1,−2,−2] r−→ [1, 0,−3] r−→ [1, 2,−2],
and the cycle is of length 3 (in contrast, the Gauss cycles are always of even
length, see [8, Prop. 3.6 p. 24]).

Remark 4.7. The results of the present subsection and the previous one
are similar to results of Gauss (see [5, Ch. 3] or [11, Ch. VII]); in the
latter results one considers reduced forms (rather than good forms as
here). An indefinite binary quadratic form ax2 + bxy + cy2 is reduced if
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0 <
√
d(f)− b < 2|a| <

√
d(f ]+ b. The neighbouring relations f → g in the

Gauss cycles are somewhat more complicated to compute (see [11, p. 102]
or [5, p. 23]).

Another notion of reduction, leading to similar results, is given by Za-
gier [30, p. 122]: he calls reduced a form such that a > 0, c > 0, b > a+ c.

4.3. Representation of a number by a form. We say that a form
f(x, y) represents primitively (or properly) a number m if for some relatively
prime integers x, y one has f(x, y) = m.

The following theorem is an extension of a theorem of Lagrange, see [11,
Thm. 85 p. 111]4.

Theorem 4.8. Suppose that the form f represents primitively the positive
number m with m <

√
d(f). Then m is the first coefficient of some good

form equivalent to f ; equivalently it is the first coefficient of a form in the
cycle associated to f .

It is remarkable that the factor 1
2 , necessary in Lagrange’s theorem, is not

necessary in the present result; this is similar of what happens for quadratic
equations and generalized Pell equations, as noted by Hurwitz [17, §4 p. 425-
427]; see also Subsection A.4.

Proof. It is well-known that, since f represents primitively m, there is an
equivalent form f(x, y) = ax2 + bxy+ cy2 such that a = m. This is seen as
follows: we have f(p, r) = m for some relatively prime integers p, r; there
exist integers q, s such that ps−qr = 1; the matrixM = ( p qr s ) is in SL2(Z);
then, by a calculation made in Subsection 4.1, f.M = f(p, r)x2 + (. . .)xy+
f(q, s)y2.

Thus we may assume that f(x, y) = ax2+bxy+cy2 and a = m. The point
of the proof is that the hypothesis a <

√
d(f) implies that the difference

between the two roots of f , namely −b±
√
d(f)

2a , is > 1, hence there is some
integer h lying strictly between them and therefore f(h, 1) < 0 (because
a > 0). Now the form f(x + hy, y) = f.

( 1 h
0 1
)
is equivalent to f , and we

may conclude since it is equal to ax2 + (. . .)xy+ f(h, 1)y2, which is a good
form. �

5. Morphic Sturmian sequences

We begin by recalling some facts on Sturmian words. Details may be
found in Lothaire’s book [22, Ch. 2], [3, Ch. 9 and 10] or [14, Ch. 6]. A
Sturmian word is a non ultimately periodic infinite word s on the alphabet
{a, b} which satisfies the following balance property: for any factors u, v of

4This theorem asserts that if a quadratic form f represents primitively an integerm, satisfying
|m| < 1

2d(f), then m is the first coefficient of some quadratic form in the Gauss cycle determined
by f .
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equal length of s, one has |u|a − |v|a = −1, 0 or 1 (here |w|a denotes the
number of a’s in w)

It is then shown that the limit, when the length of w tends to infinity,
of the number |w|b|w|a , for the factors w of s, exists. We call this number the
slope of s.

For a proof of the existence of the limit, see [22, Prop. 2.1.7]. Note that
there is considered the quantity |w|b

|w|a+|w|b , but this does not change the
existence of the limit.

Our slope of a Sturmian word, which is in the spirit of the article [6]
of Borel and Laubie, is not the same than that of [22], which follows the
definition of Morse and Hedlund [23] (it is the limit of |w|b|w| ). The former
behaves better with respect to Sturmian morphisms than the latter, as we
see below.

A Sturmian morphism is a monoid homomorphism from {a, b}∗ into it-
self, which is nonerasing (that is, f(a), f(b) nonempty), and such that it
preserves Sturmian sequences.

If f is a homomorphism from {a, b}∗ into itself, its abelianization M(f)
is the matrix

M(f) =
(
|f(b)|b |f(a)|b
|f(b)|a |f(a)|a

)
.

It is well-known that one has the following matrix relation, for any word
w:

(5.1)
(
|f(w)|b
|f(w)|a

)
= M(f)

(
|w|b
|w|a

)
Note that this implies that

|f(w)|b
|f(w)|a

= M(f) · |w|b
|w|a

,

using the action of matrices on numbers recalled in Section 2: indeed, letting
M(f) = ( p qr s ), we have |f(w)|b = p|w|b + q|wa, |f(w)|a = r|w|b + s|wa, and

|f(w)|b
|f(w)|a

= p|w|b + q|w|a
r|w|b + s|w|a

=
p |w|b|w|a + q

r |w|b|w|a + s
= M(f) · |w|b

|w|a
.

It follows from this equality that if s = f(t) for two Sturmian sequences
s, t, of respective slopes α, β, then ([6, Thm. 4])

(5.2) α = M(f) · β,

if we assume that f is nonerasing. Indeed, let wn, n ∈ N, be factors of
increasing length of t. Then |wn|b

|wn|a tends to β when n tends to infinity.
Similarly, |f(wn)|b

|f(wn)|a tends to α, since the length of f(wn) tends to infinity.
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Now, we have
|f(wn)|b
|f(wn)|a

= M(f) · |wn|b
|wn|a

.

By taking the limit, we obtain (5.2).
A Sturmian word is called morphic if it is the fixpoint of some nonerasing

endomorphism of the free monoid5, which is not the identity.
Theorem 5.1. A number is good if and only if it is the slope of a morphic
Sturmian sequence.

This theorem is due to Allauzen (see [2, Def. p. 238, Thms. 1 and 3]). It
is also related to Theorem 12 of [12] (see also [20, Thm. 3.6]), which char-
acterizes morphic (strict standard) Sturmian sequences by the periodicity
of their directive sequence. Earlier work on slopes of morphic Sturmian se-
quences has been done in [7, Thms. 1,2,3,4], [19, Thm. p. 288], [10, Thm. 2
and 3], [5, Cor. p. 48], [4, Thm. 3.7], [21, Cor. p. 352], [25, Thm. 3]; see
also [27].

Proof. The “if” part follows from (5.2) and Lemma 3.5, since the slope
of a Sturmian sequence is irrational ([22, Prop. 2.1.11 and Thm. 2.1.13]),
and since the abelianization of the morphism f is not a scalar matrix:
indeed, if it were such a matrix, then the morphism would be of the form
f(a) = an, f(b) = bn for some n ≥ 2 (n = 1 is impossible since f is not
the identity); then since the Sturmian word s contains both the letters a
and b (it is not periodic), s = f(s) would contain the factors aa and bb,
contradicting the balance property.

For the converse, we use the proof of Theorem 3.1: we have ξ = M · ξ,
where M is a product of matrices L and R; this product has L’s and R’s
in it. We take the corresponding product f of morphisms (a 7→ a, b 7→ ab)
and (a 7→ ab, b 7→ b), whose abelianizations are R and L. Then f sends a
onto au, u 6= 1, and therefore f has a fixpoint s, which is the limit of the
finite words fn(a) (each of which is a proper prefix of the next one). Then
by (5.2) the slope of s is ξ. The infinite word s is Sturmian, since the two
previous morphisms are Sturmian, so that fn(a) is balanced and since the
slope of s is irrational, see [22, Prop. 2.1.11 and Thm. 2.1.5]. �

6. Binary Lyndon words, classes of good numbers and quadratic
forms

A finite word is primitive if it is not a nontrivial power of another one. It
is well-known that each periodic infinite word is of the form w∞ for some
unique primitive word w. Order the alphabet {l, r} by l < r and extend
it to a lexicographical order on the free monoid {l, r}∗; a Lyndon word is

5An important result of Berstel and Séébold ([4, Thm. 3.2]; see also [22, Thm. 2.3.7]) implies
that the morphism must then be Sturmian, but we do not need this here.
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a primitive word that is the smallest, for the lexicographical order, in its
conjugation class (that is the words obtained by circular permutations of
this word). For example, lrlrr is a Lyndon word, being smaller than the
words rlrrl, lrrlr, rrlrl, rlrlr.

An integral quadratic form is called primitive if its coefficients are rela-
tively prime. Then each form in its SL2(Z)-equivalence class is primitive.
Theorem 6.1. There are natural bijections between

(i) the set of Lyndon words on {l, r}, excluding l and r;
(ii) the set of classes of real quadratic numbers under SL2(Z)-equiv-

alence;
(iii) the set of primitive indefinite integral binary quadratic forms under

SL2(Z)-equivalence.
Note that a counting argument by Uludaǧ, Zeytin and Durmuş predicts

the existence of a bijection between (i) and (iii) (see [29, p. 455–456]). In
the proof below, we construct an explicit one.
Lemma 6.2. Let ξ be a good number and ξn = Nn(ξ). Let d0d1d2 · · · be
the Stern–Brocot expansion of ξ. Let an, bn, cn be relatively prime integers,
with an > 0, such that ξn is a root of anx2 + bnx + cn. Let fn(x, y) =
anx

2 + bnxy + cny
2. Then fn

dn−→ fn+1.
Proof. Observe that anx2 + bnx + cn is the unique minimal polynomial
of ξn whose coefficients are relatively prime integers and whose dominant
coefficient is positive. Note that all the ξn are good numbers (Lemma 3.2)
and all the quadratic forms fn are good forms.

Suppose that ξn > 1; then dn = r and ξn+1 = ξn−1. Since ξ̄n < 0, an > 0
and thus 1 ∈ [ξ̄n, ξn], we have an + bn + cn < 0. Hence fn

r−→ g for some
good form g (Theorem 4.3(i)). It is enough to show that g = fn+1. By (4.1),
g = [an, 2an+bn, an+bn+cn] and ξn+1 is a root of an(x+1)2+bn(x+1)+cn =
anx

2 + (2an + bn)x+an + bn + cn. The coefficients of this latter polynomial
are relatively prime and its dominant coefficient is positive. Hence g = fn+1
by the previous observation.

Suppose that ξn < 1; then dn = l and ξn+1 = ξn

1−ξn
, equivalently ξ−1

n+1 =
ξ−1
n − 1. Since ξ̄n < 0 and thus 1 /∈ [ξ̄n, ξn], we have an + bn + cn > 0. Hence
fn

l−→ g for some good form g. It is enough to show that g = fn+1. By (4.1),
g = [an + bn + cn, bn + 2cn, cn] and, since ξ−1

n is a root of cnx2 + bnx+ an,
ξ−1
n+1 is a root of cn(x+ 1)2 + bn(x+ 1) +an, which is equal to cnx2 + (2cn+
bn)x+cn+bn+an. Hence ξn+1 is a root of (an+bn+cn)x2+(bn+2cn)x+cn,
which implies as above that g = fn+1. �

Proof of Theorem 6.1. Associate with each Lyndon word u the SL2(Z)-class
of the real number whose Stern–Brocot expansion is u∞. This number is
quadratic by Theorem 3.
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The previous mapping is an injective mapping: indeed, if u, v are Lyndon
words such that the numbers with expansion u∞, v∞ are SL2(Z)-equivalent,
then by a theorem of Hurwitz (Theorem A.1 in the Appendix), these two
infinite words are ultimately equal, hence equal since they are periodic;
then one must have u = v, because they are Lyndon words.

The mapping is surjective: let ξ be any real quadratic number; up to
equivalence, we may assume that ξ > 0 (since ξ is equivalent to any ξ + n,
n ∈ N). Its Stern–Brocot expansion is ultimately periodic (Corollary 3.6),
hence of the form uv∞ for some Lyndon word v and some word u; then the
expansion of ξ|u| is v∞, and we know that this latter number is equivalent
to ξ. Then, by definition of the mapping, the class of ξ is in the image of v.

Thus we have obtained a bijection between the sets (i) and (i).
We give now a bijection between the sets (ii) and (iii). With any real qua-

dratic number, associate first an equivalent good number ξ (Corollary 3.7).
Then associate with ξ the class of the form f = ax2 + bxy + cy2, where
ax2 + bx+ c is the unique integral polynomial having this number as root,
with a > 0 and a, b, c relatively prime; f is good since ξ̄ < 0, hence c < 0,
and ξ is necessarily the positive root of f .

We verify that this mapping is well-defined. If τ is a good number equiva-
lent to ξ under SL2(Z), then by Theorem A.1 their Stern–Brocot expansions
(which are periodic by Theorem 3.1) are shift each of another. It follows
then from Lemma 6.2 that the corresponding forms are equivalent. Hence,
the mapping ξ 7→ class of f is well-defined.

The mapping is injective: let indeed ξ, α be two quadratic numbers hav-
ing the same image under the mapping. Take two good numbers ξ′, τ ′
respectively equivalent to them. Then, by the previous construction of the
mapping, their images are the classes of good forms whose positive roots
are respectively ξ′, τ ′ ; since by hypothesis these forms are equivalent, it
follows from Lemma 4.2 that ξ′, τ ′ are equivalent. Hence so are ξ, τ .

Surjectivity follows from the fact that each class C of forms contains a
good form f . Then C is the image of the equivalence class of the positive
root of f . �

Given a Lyndon word w, the corresponding good form is obtained as
follows: let µ(w) = ( p qr s ); then the form is 1

d(rx2 + (s− p)xy − qy2), where
d = gcd(s−p, q, r) > 0. Indeed, the number ξ whose Stern–Brocot expansion
is w∞ satisfies ξ = µ(w) · ξ = pξ+q

rξ+s , thus rξ
2 + (s− p)ξ − q = 0.

As a byproduct, we obtain for each class of forms a canonical representa-
tive (compare to [29, p. 456]). It is characterized by the fact that its positive
root is the smallest one in the cycle; this follows since comparing positive
real numbers amounts to compare lexicographically their Stern–Brocot ex-
pansions. It would be interesting to characterize this unique representative
intrinsically by its coefficients.
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The bijection between classes of forms and Lyndon words may be re-
covered directly from the cycle of good forms in the equivalence class of a
given form. We give first a property of this cycle. We use the fact that a
primitive good form is completely determined by its positive root.

Proposition 6.3. Let f a good form and suppose that the cycle of f is of
the form fi

ai+1−−−→ fi+1 with f0 = f, . . . , fN = f , a1 · · · aN = wn for some
primitive word w and some integer n ≥ 1. Then f|w| = f .

Lemma 6.4. Suppose that ξ, α are positive real numbers and that ξ = M ·α
for some matrix M in SL2(N). Then for some n ∈ N we have α = ξn.
In particular, with w ∈ {l, r}∗ defined by µ(w) = M , the Stern–Brocot
expansion of ξ is the concatenation of the word w and of the Stern–Brocot
expansion of α.

Proof. Recall that SL2(N) is a monoid freely generated by the matrices R
and L. We argue by the length of M in this free monoid. If the length is
0, there is nothing to prove. Suppose that the length is > 0. Then either
M = PR or M = PL, with a shorter P in the monoid. Let β = R ·α in the
first case and β = L ·α in the second case. Then β > 0. Moreover ξ = P ·β,
so by induction we obtain that β = ξn for some n.

In the first case, we have β = α+ 1, so that β > 1; hence N(β) = β − 1
and α = R−1 · β = β − 1 = N(β) = N(ξn) = ξn+1.

In the second case, β = α
α+1 , so that β < 1; hence N(β) = β

−β+1 and
α = L−1 · β = N(β) = N(ξn) = ξn+1. �

Proof of Proposition 6.3. We may assume that f is primitive. Let M =
µ(w). Then f = f ·Mn. By Lemma 4.2, the positive root ξ of f satisfies
ξ = Mn · ξ. Hence its Stern–Brocot expansion is w∞, by Lemma 6.4. Hence
ξ = M · ξ and ξ = M−1 · ξ. Let g = f.M so that g is on the cycle, hence
good, and f = g.M−1. It follows from Lemma 4.2 that g has M−1 · ξ = ξ
as root. Thus, g having ξ as root, being good and primitive, must be equal
to f . Thus f = f.M and the lemma follows. �

Corollary 6.5. The bijection from (iii) to (i) in the Theorem 6.1 is com-
puted directly as follows: for a given class, the associated Lyndon word is
the label of a cycle, which up to conjugation, is a Lyndon word.

Proof. Indeed, let the cycle be f0 → f1 · · · → fn = f0. Then by the proposi-
tion, the word w ∈ {l, r}∗ labelling the cycle is primitive. We may suppose
that it is a Lyndon word. It is enough to show that in the bijection from (i)
to (iii), w is mapped onto the class of f0. We have f0 ·µ(w) = f0. It follows
from Lemma 4.2 that the positive root of f0 satisfies the quadratic equation
rξ2+(s−p)ξ−q = 0, where µ(w) = ( p qr s ). Thus f0 = 1

d(rx2+(s−p)xy−qy2),
where d = gcd(s − p, q, r) > 0, since f0 is good and primitive. It follows
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that w is mapped onto the class of f0, as was seen after the proof of Theo-
rem 6.1. �

Let us see some examples. As follows from the examples at the end of
Section 4, the Lyndon word lr corresponds to the class of the quadratic form
[1, 1,−1], while the Lyndon word lrr correspond to the class of the form
[1, 2,−2]. The corresponding classes of numbers are those of the positive
roots of theses forms, that is

√
5−1
2 and

√
3− 1 respectively.

Appendix: Three theorems of Hurwitz

A.1. The construction of Hurwitz. First, we review how Hurwitz de-
fines in [17] the expansion of an irrational number ξ. Recall that the Farey
sequence Fn of order n is defined as follows: F−1 = 0

1 ,
1
0 , and for n ≥ −1,

Fn+1 obtained from Fn by inserting between any two consecutive fractions
r
u ,

s
v of Fn, such that u + v, r + s ≤ n + 2, their mediant r+s

u+v ([17, Satz 2
p. 420])6. For example, the first Farey sequences Fn, n = −1, 0, 1, 2, 3, are

0
1

1
0

0
1

1
1

1
0

0
1

1
2

1
1

2
1

1
0

0
1

1
3

1
2

2
3

1
1

3
2

2
1

3
1

1
0

0
1

1
4

1
3

1
2

2
3

3
4

1
1

4
3

3
2

2
1

3
1

4
1

1
0

Comparing with Section 2, it is readily seen that the n-th Farey sequence
is a subsequence of the n-th Stern–Brocot sequence.

If x is an irrational number, and n some natural integer, then x lies in
some interval [ ru ,

s
v ], where r

u ,
s
v are two consecutive members of the Farey

sequence Fn. This pair is called a pair of approximating fractions of x
(“Paar von Näherungsbrüchen”, [17, p. 423–424]). With x is then associated
the decreasing sequence of all such intervals. If [ ru ,

s
v ] is an interval in this

sequence, then the next one is of the form [ ru ,
r+s
u+v ] or [ r+su+v ,

s
v ]; in other

words, only one bound of the two intervals is new at each step ([17, p. 424]).
Consider the sequence of these new bounds. It may be shown that this

sequence of fractions is the set of nodes of the path defined by x in the
Stern–Brocot tree, as in Section 2. Thus the Stern–Brocot expansion is
obtained by replacing each fraction by r if x is larger than the fraction,
and by l if it is smaller. But this is exactly what does Hurwitz in order to

6Note that we have shifted the indices. Moreover we have considered only the positive part of
the sequences in [17]. Note also that classical Farey sequences are restricted to numbers between
0 and 1
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obtain the characteristic (“Characteristik”) of x, except that he uses − and
+ instead of r and l, see [17, p. 428]7.

Let us take the example of Hurwitz, with x =
√

2. The first nine inter-
vals are[0

1 ,
1
0

]
,

[1
1 ,

1
0

]
,

[1
1 ,

2
1

]
,

[1
1 ,

3
2

]
,

[4
3 ,

3
2

]
,

[7
5 ,

3
2

]
,

[7
5 ,

10
7

]
,

[7
5 ,

17
12

]
,

[24
17 ,

17
12

]
, . . .

The sequence of new bounds is
1
1 ,

2
1 ,

3
2 ,

4
3 ,

7
5 ,

10
7 ,

17
12 ,

24
17 , . . .

The characteristic is therefore −+ +−−+ + · · · and the Stern–Brocot
sequence is rllrrll · · · .

It is shown by Hurwitz ([17, Satz 4 p. 424]) that if x ∈ [ ru ,
s
v ] and us −

vr = 1, then r
u ,

s
v is a pair of approximating fractions of x. It follows from

Section 2 that these two fractions are semi-convergents of x.

A.2. Numbers equivalent under SL2(Z). It is well-known that two
irrational reals have ultimately the same expansion in continued fractions
if and only if they lie in the same orbit under the action of GL2(Z) (Serret’s
theorem).

What happens for the smaller orbits under SL2(Z)? This is the following
result of Hurwitz.

Theorem A.1 (Hurwitz [17, statement p. 434]). Two positive numbers
have ultimately the same Stern–Brocot expansion if and only if they lie in
the same orbit under SL2(Z).

Let ξ be a positive real irrational number. Recall that the numbers ξn
have been defined in Section 2: ξn = Nn(ξ). Recall that the monoid SL2(N)
is generated freely by the matrices L and R. In other words, the homomor-
phism µ is a bijection {l, r}∗ → SL2(N).

Proof. If ξ and α have ultimately the same Stern–Brocot expansion, then
ξn = αp for some n, p. Since ξ = M · ξn and α = P · αp for some matrices
M,P in SL2(N), we obtain that α = PM−1 · ξ, hence ξ and α are in the
same orbit under SL2(Z).

Conversely, suppose that α, ξ are positive irrationals such that α = Q · ξ
for some matrix Q ∈ SL2(Z). We may write ξ = Mn ·ξn for some matrixMn

which is a product of matrices L and R. Note that the coefficients of Mn

tend to infinity with n, since the product involves both L and R’s. Write

Q = ( p qr s ) ,Mn =
(
an bn
cn dn

)
.

7He says that he follows Christoffel [9, p. 259]; the word “Characteristik” used by Christoffel
refers however to someting else: it is, in more recent terms, the Sturmian sequence associated
to x.
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We may assume that rξ + s > 0, replacing Q by −Q if necessary. We have
α = (QMn) · ξn, so that

α = Anξn +Bn
Cnξn +Dn

,

with QMn =
(
An Bn
Cn Dn

)
, Cn = ran + scn, Dn = rbn + sdn. We know that

the limit of an
cn

is ξ, and similarly for bn
dn
. Hence an = ξcn + εncn and

bn = ξdn + ε′ndn where εn and ε′n tend to 0. We have Cn = (rξ + s +
rεn)cn, Dn = (rξ + s+ rε′n)dn. Thus for n large enough, Cn, Dn > 0. Now
the matrix QMn is in SL2(Z), has positive coefficients in its second row.
The coefficients in its first row are then either both nonnegative, or both
nonpositive (otherwise its determinant is ≥ 2 or ≤ −2). The second case
cannot occur since 0 < α = (QMn) · ξn and ξn > 0. Thus QMn ∈ SL2(N).

We now apply Lemma 6.4 to the equality α = (QMn) · ξn and conclude
that for some p, αp = ξn. Hence the expansions of ξ and α are ultimately
equal. �

By Serret’s theorem and by the correpondance between continued frac-
tions and Stern–Brocot representation (see Section 2), the corollary below
follows.

Corollary A.2. Two irrational numbers are GL2(Z)-equivalent if and only
if their Stern–Brocot expansions are ultimately equal, up to the exchange of
l and r.

Each number is GL2(Z)-equivalent to its inverse. The number
√

3 is not
SL2(Z)-equivalent to its inverse; indeed the Stern–Brocot expansion of

√
3

and its inverse are respectively (rlr)∞ (because the expansion of
√

3− 1 is
(lrr)∞, see the end of Section 6) and (lrl)∞ (as indicates the computation
ξ = 1√

3 < 1, ξ1 =
√

3+1
2 > 1, ξ2 =

√
3−1
2 < 1, ξ3 = ξ).

A.3. Quadratic error implies semi-convergent. Recall that, by a the-
orem of Legendre, for each real number ξ, each rational number p/q satisfy-
ing |ξ−p/q| < 1/2q2 must be a convergent of ξ. The converse is however not
true, although each convergent satisfies the inequality |ξ−p/q| < 1/q2. But
the converse of this latter statement is not true either: there are rational
numbers satisfying this equality and which are not convergents. However,
Hurwitz proved the following result, improved by Fatou and Grace8.

Theorem A.3. If |ξ − p/q| < 1/q2, then:
(1) (Hurwitz [17, Satz 5 p. 424]) p/q is a semi-convergent of ξ;
(2) (Fatou [13, p. 1019], [15, p. 259–250]) p/q is a convergent or adja-

cent to a convergent.
8I am indebted to Yann Bugeaud for indicating me the results of Fatou and Grace and the

references.
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In other words, p/q is the label of some node on the path of the Stern–
Brocot tree determined by ξ, and this node corresponds to a convergent
(see the description of these nodes in Section 2.1), or is adjacent to such a
node.

The proof of the theorem in is two parts. For the first assertion, we give
a variant of the argument of Hurwitz; for the second, we follow an idea
of Grace, using the following lemma, of independent interest, and which is
similar to a calculation of the error term for convergents, see e.g. [1, (1.15)
p. 23].

Lemma A.4. Let ξ = SB(s), s ∈ {l, r}∞, s = wxs′, w ∈ {l, r}∗, x ∈ {l, r},
and p/q = SB(w). Then

ξ − p

q
= 1
λq2 ,

with two cases:
(a) x = l, −λ = SB(s′) + q′/q, p′/q′ is the node after the first left step

on the path from p/q towards the root on the Stern–Brocot tree;
(b) x = r, λ = SB(s′)−1 + q′/q, p′/q′ is the node after the first right

step on this path.

Proof. Suppose that we are in the first case. We use several times the basic
results of Section 2.1. We have µ(wl) =

(
p p′

q q′

)
(see Figure 2.2 right part).

We have ξ = µ(wl)·ξ′ with ξ′ = SB(s′). Thus ξ− p
q = pξ′+p′

qξ′+q′−
p
q = −1

q(qξ′+q′) =
−1

q2(ξ′+q′/q) . Thus −λ = ξ′ + q′/q.
In the second case, we have µ(wr) =

(
p′ p
q′ q

)
. Then, with ξ′ = SB(s′),

ξ = µ(wr) · ξ′ = p′ξ′+p
q′ξ′+q = p′+pξ′−1

q′+qξ′−1 ; hence ξ− p
q = p′+pξ′−1

q′+qξ′−1 − p
q = 1

q(q′+qξ−1) =
1

q2(ξ′−1+q′/q) . Thus λ = ξ′−1 + q′/q. �

Proof of Theorem A.3. (1). The number p/q appears on the Stern–Brocot
tree. Hence it is the mediant of two earlier nodes p1/q1 < p2/q2: p = p1 +p2,
q = q1 + q2. Note that p2q1 − p1q2 = 1 (see Section 2); it follows that
pq1− p1q = (p1 + p2)q1− p1(q1 + q2) = 1 and similarly p2q− pq2 = 1. Thus
p/q − p1/q1 = 1/qq1 ≥ 1/q2 and p2/q2 − p/q = 1/qq2 ≥ 1/q2.

It follows from the hypothesis that |ξ − p/q| < p/q − p1/q1, p2/q2 − p/q.
Thus ξ is in one of two intervals [p1/q1, p/q] or [p/q, p2/q2]. It follows from
Subsection A.1 that p/q is a semi-convergent of ξ.

(2). By (1), we may write ξ = SB(s), s = w · · · , p/q = SB(w), s ∈
{l, r}∞, w ∈ {l, r}∗. Suppose that p/q is not a convergent, nor a semi-
convergent adjacent to some convergent. Suppose that we are in case (a).
of the lemma. Then, using the geometric description of the convergents of
ξ given in Section 2.1, we must have s = wlll · · · : otherwise s = wlr or wllr
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and then w is a convergent or adjacent to a convergent. Then s′ = ll · · · and
therefore ξ′ < 1/2. Moreover, we must have w = urli and i ≥ 1: otherwise,
w = ur and since s = url · · · , u is a convergent and w is adjacent to a
convergent. Let µ(u) =

(
a b
c d

)
. We have µ(wl) = µ(u)RLi+1 and thus with

the notations of the proof of the lemma q′ = c+ d, q = (i+ 2)c+ (i+ 1)d so
that q′/q < 1/2. It follow that |λ| < 1, and we cannot have |ξ−p/q| < 1/q2.

The case (b) of the lemma is similar. �

The converse of the theorem is not true, as shows any ξ = SB(rrl · · · );
then SB(r) = 2 is a convergent, so that 1/1 (having empty Stern–Brocot
expansion) is a semi-convergent adjacent to a convergent; one has ξ − 1 =
ξ1 = SB(rl · · · ) > 1/12.

To see some examples, let ξ = 1 +
√

2. Its partial quotients are all equal
to 2. The convergents are 2, 5/2, 12/5, . . .. The other semi-convergents are
1, 3, 7/3, 17/7, . . .. One may verify that 3, 7/3, 17/7 satisfy the hypothesis of
the previous theorem. Note that the convergents are exactly the fractions
Pn+1/Pn and the other semi-convergents are 1 and the fractions (Pn+1 +
Pn)/(Pn + Pn−1), n ≥ 0, where Pn are the Pell numbers defined by P−1 =
0, P0 = 1 and Pn+1 = 2Pn + Pn−1 for n ≥ 0.

A.4. Primitive representation of numbers.

Theorem A.5 (Hurwitz [17, first statement p. 427]). Let f(x, y) = ax2 +
bxy + cy2 be an indefinite binary quadratic form with a or c > 0. Suppose
that u, v are relatively prime integers such that au2 + buv + cv2 = m and
0 < m <

√
d(f) 9. Then u

v is a semi-convergent of one of the roots of f .

Note that one uses here also negative semi-convergents, by extending the
Farey sequences to negative numbers. This result (and the proof) is similar
to a result that one may find in the book of Serret [28, Thm. p. 80]: the
stronger inequality there is m < 1

2
√
d(f) and the stronger conclusion is

that u
v is a convergent of one of the roots of f .
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