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Periodic Jacobi–Perron expansions associated
with a unit II

par Brigitte ADAM et Georges RHIN

Résumé. Pour toute unité d’un corps de nombres réel K de degré n + 1,
il n’existe qu’un nombre fini de n-uples dans Kn qui ont un développement
purement périodique par l’algorithme de Jacobi–Perron associé à cette unité.
Nous donnons un algorithme explicite pour calculer tous ces n-uples pour tous
les degrés n+ 1 et toutes les unités de K.

Abstract. For any unit ε in a real number field K of degree n + 1, there
exist only a finite number of n-tuples in Kn which have a purely periodic
expansion by the Jacobi–Perron algorithm associated with this unit. We give
an explicit algorithm to compute all these n-tuples for any degree n+ 1 and
any unit of K.

1. Introduction

One of the generalizations of the continued fraction algorithm to higher
dimensions is the Jacobi–Perron Algorithm (JPA). Its main interest lies
in the great simplicity of its definition. For n = 1, we get the continued
fraction algorithm.

The continued fraction expansion of a real number α is ultimately pe-
riodic if and only if α is a real quadratic number. Moreover, a quadratic
number α has a purely periodic expansion if and only if α > 1 and its
conjugate α satisfies −1 < α < 0 (we say that α is reduced) [3, p. 50].
In this case, if l denotes a period length and

(pi
qi

)
(i ≥ 0) the sequence of

convergents of α then we have:

(1.1)
(
pl pl−1
ql ql−1

)(
α
1

)
= ε

(
α
1

)
,

where ε = qlα+ ql−1 is a unit of Q(α).

Proof. The characteristic polynomial of the 2 × 2 matrix on the left-hand
side of (1.1) is equal to x2 − x (pl + ql−1) + plql−1 − qlpl−1. P has a root
ε > 1 which is a unit since P (0) = ±1. Then, since the expansion of α is
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purely periodic with a period of length l, we have α = plα+pl−1
qlα+ql−1

, it is easy
to verify that ε = qlα+ ql−1. �

This property is also valid for purely periodic JPA expansions with n >
1. It is called the Hasse–Bernstein Theorem [5] and ε is called a Hasse–
Bernstein unit. E. Dubois, A. Fahrane and R. Paysant-Le Roux [6] proved
that, for n = 2, deg(K) = 3, the Hasse–Bernstein units are always Pisot
numbers and that this is not always true for n ≥ 3.

Several authors have presented a few classes of periodic JPA expansions:
see [7], [8]. In [9] C. Levesque and G. Rhin presented new periodic expan-
sions in cubic number fields depending on parameters. The length of the
period tends to infinity with the parameters. B. Adam [1] generalized [9]
and P. Voutier [11] gave new periodic expansions in number fields depend-
ing on parameters.

For n = 1, it is well-known that if ε is a unit of a real quadratic field
K, then there exists only a finite number of reduced elements in K whose
continued fraction expansion is associated with ε by (1.1).

In [2] B. Adam and G. Rhin generalised this result as follows. Let K be
a real number field of degree n + 1 and ε a unit of K, there exist only a
finite number of elements in Kn whose JPA expansion is purely periodic
and associated with ε (as defined in Definition 4).

Moreover in the same paper, for n = 2, B. Adam and G. Rhin [2] gave
an explicit algorithm which gives, for any unit, all the purely periodic ex-
pansions associated with this unit.

Here we give an explicit algorithm to compute all these expansions for
any real number field K and any unit in K.

In Section 2, we recall the basic facts that are needed in the other parts of
the paper. In Section 3, we give our algorithm and in Section 4, we provide
some information about the application of this algorithm to some specific
examples.

Acknowledgments. We thank the referee for doing an awesome job to
make this manuscript suitable for publication.

2. Preliminaries: JPA and Hasse–Bernstein theorem

We assume now that the n + 1 real numbers 1, α1, α2, . . . , αn are Q-
linearly independent.

Definition 1. Let α = (α1, α2, . . . , αn) be a vector in Rn (n ≥ 1). The
Jacobi–Perron Algorithm (JPA) expansion [10] of α is given by the two
sequences:

• (a(ν))ν≥0 in Zn where a(ν) = (a(ν)
1 , a

(ν)
2 , . . . , a

(ν)
n );

• (α(ν))ν≥0 in Rn where α(ν) =
(
α

(ν)
1 , α

(ν)
2 , . . . , α

(ν)
n

)
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defined by:
α(0) = α;
a

(ν)
i =

[
α

(ν)
i

]
for 1 ≤ i ≤ n and ν ≥ 0;

if α(ν)
1 6= a

(ν)
1 , α

(ν+1)
n = 1

α
(ν)
1 −a(ν)

1
; α(ν+1)

i = α
(ν)
i+1−a(ν)

i+1

α
(ν)
1 −a(ν)

1
for 1 ≤ i < n.

where [x] is the greatest integer part of x. We define a(ν)
0 = 1 and α(ν)

0 = 1
for all ν.

Definition 2. The JPA expansion of α is periodic if there exist two integers
k ≥ 0 and l > 0 such that a(k+ν)

i = a
(k+ν+l)
i for all ν ≥ 0 and 0 < i ≤ n. l

is called a period length.
If k and l are the smallest integers which satisfy this equality, then k is
called the preperiod length and l is called the primitive period length. If
k = 0, then the expansion is said to be purely periodic.

Remark. If the Jacobi–Perron Algorithm (JPA) expansion [10, pp. 4–5]
of α is purely periodic, then the vectors a(ν) =

(
a

(ν)
1 , a

(ν)
2 , . . . , a

(ν)
n

)
in Zn

satisfy the following Perron Conditions P1:
for ν ≥ 0 and 0 ≤ i ≤ n,(
a

(ν)
n , a

(ν+1)
n−1 , . . . , a

(ν+i)
n−i

)
≥
(
a

(ν)
i , a

(ν+1)
i−1 , . . . , a

(ν+i−1)
1 , a

(ν+i)
0

)
in lexicographical order.

Definition 3. We define the sequence A(ν) =
(
A

(ν)
0 , A

(ν)
1 , A

(ν)
2 , . . . , A

(ν)
n

)
of vectors in Zn by:

for 0 ≤ i ≤ n and 0 ≤ j ≤ n, A(j)
i =

{
1 if i = j

0 otherwise
for ν ≥ 0 and 0 ≤ i ≤ n,
A

(ν+n+1)
i = A

(ν)
i + a

(ν)
1 A

(ν+1)
i + · · ·+ a

(ν)
n A

(ν+n)
i .

We have the following formulas, which were shown by Perron [10]:

• αi =
∑n
j=0A

(ν+j)
i α

(ν)
j∑n

j=0A
(ν+j)
0 α

(ν)
j

for all ν ≥ 0 and 1 ≤ i ≤ n,

• by writing

(2.1) Aν =



a
(ν)
n 1 0 . . . 0

a
(ν)
n−1 0 . . . . . . ...
...

... . . . . . . 0
a

(ν)
1 0 . . . 0 1
1 0 . . . . . . 0


,
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we have

A(ν) = A0A1 · · · Aν−1 =


A

(ν+n)
n . . . . . . A

(ν)
n

... . . . . . .
...

... . . . . . .
...

A
(ν+n)
0 . . . . . . A

(ν)
0

 .

Definition 4. If the JPA expansion of α = (α1, α2, . . . , αn) is purely peri-
odic with a period length l, then

ε = A
(l)
0 + α1A

(l+1)
0 + · · ·+ αnA

(l+n)
0 =

l−1∏
ν=0

α(ν)
n .

is a unit of K = Q (α1, . . . , αn). If l is the primitive period length, this is
the Hasse–Bernstein unit [4, Theorem 17, p. 109] and we say that this JPA
expansion is associated with the unit ε.

We have

A(l)


αn
...
α1
1

 = ε


αn
...
α1
1

 .
Notice that this is a higher dimensional version of the 2-dimensional

relationship in (1.1).

Definition 5. We say that a matrix A is a JPA matrix of length l > 0 if
there is a finite sequence of integers (a(ν)

i ), 0 ≤ ν ≤ l − 1, 0 < i ≤ n such
that A = A0A1 · · · Al−1 where the matrices Ai are defined by (2.1) and the
integers a(ν)

i satisfy the Perron conditions P1. We say that each Ai is an
elementary JPA matrix.

Definition 6. We say that a matrix A is a JPA period matrix if A is a
JPA matrix of length l > 0 and if the infinite sequence of integers (a(j)

i ),
j ≥ 0, 0 < i ≤ n defined by a(kl+ν)

i = a
(ν)
i , for 0 ≤ ν ≤ l− 1, 0 < i ≤ n and

k ≥ 1 satisfies the Perron conditions P1.

Observe that for any elementary JPA matrixA, the first column ofA, say
(an, . . . , a1, 1)T , satisfies the Perron conditions P1, so we have an ≥ ai ≥ 0
for all 1 ≤ i ≤ n− 1 and an ≥ 1.
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The following theorem has been proved in [2] as Theorem 3.1.

Theorem 7. Let K be a real number field of degree n + 1 and ε > 1 a
unit of K. There exist only a finite number of elements in Kn whose JPA
expansion is purely periodic associated with ε.

We search for a vector α = (α1, α2, . . . , αn) in Kn such that the JPA
expansion of α is purely periodic and associated with ε, that is to say we
search for the JPA period matrices A such that

A


αn
...
α1
1

 = ε


αn
...
α1
1

 .
With the previous notations we have the following lemma.

Lemma 8. Suppose that A is a JPA matrix of length k, where k is an
integer satisfying 1 ≤ k ≤ n+ 1. The first k columns of A, denoted here as
A1, . . . ,Ak, each satisfy the property P2: A1

j ≥ A
n+1
j ≥ 1, and A1

j ≥ Aij ≥ 0
for 2 ≤ i ≤ n. Denote by Ej the j-th column of the (n + 1) × (n + 1)
identity matrix. Then, the last n+ 1−k columns of A are equal to Ej−k for
k + 1 ≤ j ≤ n+ 1.

Proof. The proof follows by induction on k.
The lemma is true for k = 1 because, in this case, A is an elementary

JPA matrix which satisfies P1.
For a fixed k ≥ 1 denote by B the next elementary JPA matrix and

C = AB. The first column of B is (bn, . . . , b1, 1)T and it satisfies the property
P2. So the first column of C is equal to

C1 = bnA1 + · · ·+ bn+1−kAk + bn−kE1 + · · ·+ b1En−k + En+1−k

and the next n columns are A1, . . . ,Ak, E1, . . . , En−k. Since bn ≥ 1 and all
other bj are non-negative, it is clear that for each row the i-th term of C1 is
greater or equal to the i-th term of A1 and, since the columns A1, . . . ,Ak
satisfy the property P2. This proves the lemma. �

3. The Algorithm

Let K be a real field of degree n + 1 ≥ 2 and ε > 1 a unit such that
K = Q(ε) with Q as its minimal polynomials over Z. Let A be any JPA
period matrix associated with ε, then Q(A) = 0.

3.1. Construction of JPA period matrices. We can write any peri-
odic JPA matrix as A = A0A1 · · · Al−1 for some l ≥ 1 and build A by
constructing each of the Ak’s inductively for k = 0, . . . , l − 1.
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Initial step. By Lemma 8, the first column V = (vn+1, . . . , v1)T of any
periodic JPA matrix A satisfies the property P2. So vn+1 ≥ vi ≥ 0 for
all 2 ≤ i ≤ n + 1 and vn+1 ≥ v1 ≥ 1. Moreover, as a consequence of
P2, in particular that all the elements of A are non-negative, we find that
vn+1 ≤ trace(A) = trace(Q), the equality holding becauseQ(A) = 0 implies
trace(A) = trace(Q).

For all such column vectors, V , we proceed to the inductive step with
k = 0.

Inductive step. For a given k ≥ 0, we suppose we have the first column
of a JPA matrix Ak · · · Al−1 and we will determine both Ak and the first
column of Ak+1 · · · Al−1.

We use V = (vn+1, . . . , v1)T to denote the first column of Ak · · · Al−1
and W to denote the first column of Ak+1 · · · Al−1. From Lemma 8, there
are two possibilities.

(a) We may have W = E1. In this case, the first column of Ak is V and
Ak+1 · · · Al−1 is the (n+ 1)× (n+ 1) identity matrix. So A = A0 · · · Ak.

We now check whether Q(A) = 0. If so, then we report A as a periodic
JPA matrix associated with ε.

Our algorithm considers no further cases arising from such A0 · · · Ak.
(b) If W 6= E1, then we let (an, . . . , a1, 1)T be the first column of Ak. So

W = A−1
k V and since

A−1
k =


0 0 . . . . . . 0 1
1 0 . . . . . . 0 −an
0 1 . . . . . . 0 −an−1

0 . . . . . . . . . . . .
...

0 . . . . . . 0 1 −a1

 ,

we haveW = (v1, vn+1 − anv1, vn − an−1v1, . . . , v2 − a1v1)T . We let the ai’s
range over all possibilities such that the Perron conditions P1 are satisfied
for ν = 0, . . . , k and so that the elements of W are all non-negative. To
reduce the number of possibilities even further, we also check that the
elements of W satisfy Lemma 8 (to make the program run in a feasible
amount of time, such constraints on the ai’s should be applied as early
as possible). In this way, we get a collection of all possible Ak’s and their
associated W ’s.

We now apply the inductive step for each such W .
Note that this algorithm does terminate as at every inductive step, we

find that the sum of the elements of Ak+1 · · · Al−1 is smaller than the sum
of the elements of Ak · · · Al−1 (due to the nature of A−1

k ) and these elements
are all non-negative integers. Hence after finitely many steps, it must stop.
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3.2. Computation of α1, . . . , αn in Q(ε). From the steps in Subsec-
tion 3.1, we have now determined all the JPA period matrices, A, associated
to ε. We now show how to use our knowledge of A and ε to calculate the
αi’s exactly. Note that this is the problem of finding the eigenvectors of A
that are associated with ε.

For 1 ≤ i ≤ n, we write the αi’s as

αi =
(n+1)i∑

j=(n+1)(i−1)+1
cjε

j−((n+1)(i−1)+1),

where the cj ’s are rational numbers.
We have the equation:

A


αn
...
α1
1

 = ε


αn
...
α1
1

 .
We subtract the right-hand term side from the left-hand side and reduce

each component of this vector modulo Q(ε). Then, each component, which
is a polynomial in ε of degree at most n, has all its coefficients equal to
0. This gives a linear system Ec = S of (n + 1)2 equations and n2 + n
unknowns c = (c1, . . . , cn2+n). Keeping the first n2 + n equations of this
linear system, we get Fc = T . Thus c = F−1T .

4. Numerical computations

4.1. The units are Pisot numbers. Here we give some examples for
the degrees 4, 5 and 6 when the units are Pisot numbers. The periods
will not be always primitive. The programs have been written in Pascal. A
compiled language like Pascal was used, rather than interpreted languages
like Maple or Pari, due to speed, as the computations for each example do
take a substantial amount of time.

[K : Q] = 4, n = 3.
Let Q1 = x4−430x3 +291x2−46x+1. All its roots are real and only one is
greater than 1, ε = 429.322437 . . .. Note that ε = ω4 where ω is the unique
root of R1 = x4− 4x3− 3x2 + 2x+ 1 that is real and greater than 1. There
are 666 matrices giving purely periodic JPA developments associated to ε,
596 with period of length 4, 42 of length 6, 8 of length 8 and 20 of length 10.

[K : Q] = 5, n = 4.
Let Q2 = x5 − 57x4 − 42x3 − 22x2 − 7x − 1. It has ε = 57.734109 . . . as a
root. Note that ε = ω5 where ω = 1.965948 . . . is a root of the polynomial
R2 = x5−x4−x3−x2−x−1. There are 576 matrices giving purely periodic
JPA developments associated to ε, 1 with period of length 1, 19 with period
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of length 2, 43 with period of length 3, 498 with period of length 4, 1 with
period of length 6 (its primitive period is of length 1) and 14 with period
of length 7.

[K : Q] = 6, n = 5.
Let Q3 = x6−63x5+129x4−111x3+49x2−11x+1. It has ε = 60.911887 . . .
as a root. Here ε = ω6, where ω = 1.983582 . . . is a root of the polynomial
R3 = x6− x5− x4− x3− x2− x− 1. There are 2858 matrices associated to
ε, all with period of length 6.

4.2. The units are not Pisot numbers. Here we use examples obtained
from the example given on p. 275 of [6], with a3 = a4 = a1 = 3 and a2 = 0.

[K : Q] = 5, n = 4.
Let R4 = x5 − 3x4 − 3x3 − 3x − 1. ω = 3.8390646 . . . is a root of R4. It
is not a Pisot number since it has a real conjugate less than −1. For each
k = 1, . . . , 4, there is only one matrix which is associated to ωk. Note that
the maximum of trace

(
ωk
)
occurs for k = 4 and is 219.
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