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Quadratic rational functions with a rational
periodic critical point of period 3

par Solomon VISHKAUTSAN

Avec un appendice par Michael Stoll

Résumé. Nous établissons une classification complète des graphes des points
rationnels prépériodiques des fonctions rationnelles de degré 2 ayant un point
critique rationnel de période 3 sous les hypothèses suivantes : ces fonctions
n’admettent pas de points de période supérieure à 5 et une certaine conjecture
sur le nombre de points rationnels sur une courbe affine plane de genre 6 est
vraie. Nous montrons qu’il y a exactement six graphes possibles et que les
fonctions associées possèdent au plus onze points prépériodiques.

Abstract. We provide a complete classification of possible graphs of ratio-
nal preperiodic points of quadratic rational functions defined over the rationals
with a rational periodic critical point of period 3, under two assumptions: that
these functions have no periodic points of period at least 5 and the conjec-
tured enumeration of rational points on a certain genus 6 affine plane curve.
We show that there are exactly six such possible graphs, and that rational
functions satisfying the conditions above have at most eleven rational prepe-
riodic points.

1. Introduction
In this article we continue the classification of preperiodicity graphs of

quadratic rational functions defined over Q with a Q-rational periodic crit-
ical point that was begun in [3]. Our aim in this article is to provide a
complete classification of rational quadratic functions defined over Q with
a Q-rational periodic critical point of period 3.

Let φ : P1 → P1 be a rational function, defined over some base field K. A
point P ∈ P1 is called periodic for φ if there exists a positive integer n such
that φn(P ) = P . The minimal such n is called the period of P . A point
P ∈ P1 is called preperiodic for φ if there exists a nonnegative integer m
such that φm(P ) is periodic for φ.
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One of the main motivations for this article is the following conjecture
of Morton and Silverman.

Conjecture (Uniform Boundedness Conjecture [12]). Let φ : PN → PN be
a morphism of degree d ≥ 2 defined over a number field K. Then the number
of K-rational preperiodic points of φ is bounded by a bound depending only
on N and the degrees of K/Q and φ.

This powerful conjecture implies in particular Merel’s theorem of uniform
boundedness of torsion subgroups of the Mordell–Weil groups of rational
points on elliptic curves (see [17, Remark 3.19]), as well as the conjectured
uniform boundedness of torsion subgroups of abelian varieties (see [6]).

By Northcott’s theorem [15], the set PrePer(φ,K) of K-rational prepe-
riodic points of a morphism φ : PN → PN defined over a number field K,
is finite. It can therefore be given a finite directed graph structure, called
the preperiodicity graph of φ, by drawing an arrow from P to φ(P ) for each
P ∈ PrePer(φ,K). The conjecture of Morton and Silverman implies in par-
ticular that the number of possible preperiodicity graphs for such φ is finite
and depends only on the constants deg(φ), [K : Q] and N . It is therefore
natural to ask for the list of all possible preperiodicity graphs for a given
family of endomorphisms of PN .

The main example of a classification of preperiodicity graphs for rational
functions is the classification of preperiodicity graphs of quadratic polyno-
mials over Q by Poonen [16]. It relies on the following conjecture.

Conjecture (Flynn, Poonen and Schaefer [7]). Let φ be a quadratic poly-
nomial defined over Q. Then φ has no Q-rational periodic points of period
greater than 3.

Evidence for this conjecture can be found in several articles, including [7,
8, 14, 18].

Theorem (Poonen [16]). Assuming the Flynn, Poonen and Schaefer con-
jecture, there exist exactly 12 possible preperiodicity graphs for quadratic
polynomials defined over Q, and a quadratic polynomial has at most nine
Q-rational preperiodic points.

In the article [3], J.K. Canci and this author proposed a generalization
of Poonen’s classification of preperiodicity graphs of quadratic polynomials
to the classification of preperiodicity graphs of quadratic rational functions
with a rational periodic critical point. Recall that a point P ∈ P1 is called
critical if φ′(P ) = 0 (if P or φ(P ) are ∞ then we conjugate φ by an au-
tomorphism of P1, in order to move P and φ(P ) away from ∞). This is
indeed a generalization of quadratic polynomials since the latter are exactly
quadratic rational functions with a rational fixed critical point (up to con-
jugation by an automoprhism of P1). To give a broader perspective, Milnor
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defined in [11] families of algebraic curves Pern(µ) whose points correspond
to rational maps of degree 2 with a periodic point of period n, and multi-
plier µ. Thus, quadratic rational functions with a periodic critical point of
period n correspond to the points of the curve Pern(0).

In [3], Canci and the author provided a full classification of preperiodicity
graphs of quadratic rational functions defined over Q with a Q-rational
periodic critical point of period 2, up to the following conjecture.

Conjecture 1 (Canci and Vishkautsan [3]). Let φ be a quadratic rational
function defined over Q having a Q-rational periodic critical point of period
2. Then φ has no Q-rational periodic points of period greater than 2.

Theorem (Canci and Vishkautsan [3]). Assuming the conjecture above,
there are exactly 13 possible preperiodicity graphs for quadratic rational
functions defined over Q with a Q-rational periodic critical point of period
2. Moreover, the number of Q-rational preperiodic points of such maps is
at most 9.

In order to obtain a similar classification for quadratic rational functions
with a Q-rational periodic critical point of period 3, we need to assume
a similar conjecture to the conjecture of Flynn, Poonen and Schaefer and
Conjecture 1. First, let us define a critical n-cycle to be the set of iterates
of a periodic critical point of period n.

Conjecture 2. Let φ be a quadratic rational function defined over Q with
a Q-rational critical 3-cycle. Then φ has no Q-rational periodic points of
period greater than 2 lying outside of the critical cycle.

As (slight) support for this conjecture, we show in Section 4.3 that a
rational function defined over Q with a Q-rational critical 3-cycle cannot
have a Q-rational periodic point of period 3 or 4 lying outside of the critical
3-cycle. For the classification of quadratic rational functions with a critical
3-cycle, we also need to assume the following conjecture.

Conjecture 3. The genus 6 affine plane curve defined by the affine equa-
tion

(1.1) u5v2 + 2u4v3 − u4v2 − u4v + u3v4 − 4u3v2 + u3

+ u2v4 − 4u2v3 + 3u2v − 2uv3 + 4uv2 − u+ v2 − v = 0
has Jacobian of Mordell–Weil rank exactly 2, and the Q-rational points on
this curve are exactly (−1, 0), (1, 1), (−1, 1), (0, 0), (0, 1), and (1, 0).

In the appendix to this article M. Stoll proves Conjecture 3, conditional
on standard conjectures including the BSD conjecture, by enumerating all
rational points on the curve defined by (1.1) using the Chabauty–Coleman
method.
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Theorem 1. Assuming Conjectures 2 and 3, there are exactly six possible
preperiodicity graphs for quadratic rational functions defined over Q with
a Q-rational critical 3-cycle. Moreover, the number of preperiodic points of
such maps is at most eleven.

The six possible preperiodicity graphs are listed below in Table 1.1, and
for each graph we provide an example of a rational function which real-
izes this graph (i.e., whose preperiodicity graph is isomorphic to the given
graph). We say that a graph is realizable if there exists a rational function
that realizes it.

Table 1.1. Realizable quadratic rational functions with a
Q-rat. periodic critical point of period 3

ID φ(z) Preperiodicity graph genus

R3P0 1
(z − 1)2

•∞

•0
•1•2 ��cc

00

// N/A

R3P1 2z2 − z − 1
2z2

•0 •∞

•1•−1/2

•−1
++

vv

VV66

rr
0

R3P2 z2 + 5z − 6
z2

•0 •∞

•1•−6

•6/5

•3

•2++

vv

VV66

rr

77
��

0

R3P3 5z2 − 7z + 2
5z2

•0 •∞

•1•2/5

•2/7

•2

•1/3

++

vv

VV??

rr
$$
//

0

R3P4 3z2 − 5z + 2
3z2

•0 •∞

•1•2/3

•2/5

•−2 •2 •1/3 •1/2

++

vv

VV66

rr

// ++
jj oo

0

R3P5 5z2 − 11z + 6
5z2

•0 •∞

•1•6/5

•6/11

•2/3 •2/5 •3 •−3/2

•6

•3/5

++

vv

VV66

rr

// **
kk oo

''
77

1
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The method by which we prove Theorem 1 is by showing (Section 4.2)
that the graphs in Tables 1.2, 1.3 and 1.4 below are inadmissible, i.e., that
there exist no quadratic rational functions defined over Q with preperi-
odicity graphs containing isomorphic subgraphs. We prove in Section 3
that this is sufficient to prove Theorem 1. The way we prove inadmissibil-
ity of a given graph is by constructing a dynamical modular curve whose

Table 1.2. Inadmissible graphs for quadratic rational func-
tions with a critical 3-cycle with a modular curve of genus 1

ID Preperiodicity graph genus

N3E1
•0 •∞

•1

• •

•

•

•

•++

vv

VV
//

rr

77
��

77
��

1

N3E2
•0 •∞

•1•

•

•

•++

vv

VV66

rr

VV gg
1

N3E3 •0 •∞

•1

• •

•

•

• •• •++

vv

VV
//

rr

��
??

**jj// oo 1

Table 1.3. Inadmissible graphs for quadratic rational func-
tions with a critical 3-cycle with a modular curve of genus 2

ID Preperiodicity graph genus

N3M1
•0 •∞

•1

• •

•

•

•

• ++

vv

VV
//

rr

��
??

��
??

2

N3M2 •0 •∞

•1

• •

•

• •

•++

vv

VV
//

rr

��
?? 77

��
2

N3M3
•0 •∞

•1•

• • •• •

• •

++

vv

VV66

rr

**jj// oo

//
�� 2
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Table 1.4. Inadmissible graphs for quadratic rational
functions with a critical 3-cycle with a modular curve of
genus > 2

ID Preperiodicity graph genus

N3H1 •0 •∞

•1•

•

•

•

•

•++

vv

VV66

rr

''
77 //

��
3

N3H2

•0 •∞

•1•

•

• • • •

•

•

•

•

++

vv

VV66

rr

// **jj oo''
77

//77 6

N3H3

•0 •∞

•1•

•

• • • •

•

• •

•

++

vv

VV66

rr

// **jj oo''
77 gg

ww

5

Q-rational points correspond to conjugacy classes (under conjugation by
automorphisms of P1) of rational functions defined over Q with a rational
critical 3-cycle that admit the graph (i.e., whose preperiodicity graph con-
tains an isomorphic copy of the graph). We then prove that the dynamical
modular curve has no Q-rational points.

It is worth mentioning that other generalizations of Poonen’s theorem
and classifications of preperiodicity graphs have appeared in the literature:
the classification of preperiodicity graphs of quadratic polynomials over
quadratic fields by Doyle, Faber and Krumm [5]; the classification (over
Q) of preperiodicity graphs of rational maps with an automorphism by
Manes [10]; and the classification of all post-critically finite maps defined
over Q by Lukas, Manes and Yap [9]. The latter classification is used in
fact in the proof of Theorem 1.
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We split the nine inadmissible graphs needed for the proof of Theorem 1
into three groups, according to the genus of the corresponding dynamical
modular curve.

Acknowledgments. The author deeply thanks Michael Stoll and Maarten
Derickx, without whose help and advice this research would not have been
completed. The author would also like to thank Benjamin Collas and Kon-
stantin Jakob for many fruitful discussions during the preparation of this
article. Finally the author would like to thank Fabrizio Catanese for his
support and encouragement.

2. Preliminaries
2.1. Dynatomic polynomials. Let φ : P1 → P1 be a rational function.
We write

φ = [F (X,Y ), G(X,Y )]
using homogeneous polynomials F and G. Let

φn(X,Y ) = [Fn(X,Y ), Gn(X,Y )]
be the n-th iterate of φ for n ≥ 1, and define

Φφ,n(X,Y ) = Y Fn(X,Y )−XGn(X,Y ).
We then define the n-th dynatomic polynomial by

Φ∗φ,n(X,Y ) =
∏
k|n

(Φk,φ(X,Y ))µ(n/k),

where µ is the Moebius mu function (for the proof that Φ∗φ,n are actually
polynomials, see [13, Theorem 2.1]).

It is easy to see that if P is a periodic point of period n then P is a root of
Φ∗φ,n. The converse is not true however, and a root of Φ∗φ,n can correspond
to a periodic point of period strictly dividing n. For any n ≥ 1, we call the
roots of Φ∗φ,n periodic points of formal period n for φ.

In the article we identify (by abuse of notation) the dynatomic polyno-
mials Φ∗φ,n(X,Y ) with their dehomogenization Φ∗φ,n(z), where z = X

Y . By
dehomogenizing, we ignore the possibility of ∞ being a root of the dy-
natomic polynomials. This will not be a problem in what follows, however.

2.2. Linear equivalence of rational functions. We say that two ra-
tional functions φ1, φ2 : P1 → P1 are linearly equivalent if there exists an
f ∈ PGL2 acting as a projective automorphism of P1 such that φ2 = φf1 =
f−1φ1f .

Let φ1, φ2 be linearly equivalent. A point P is periodic of period n for φ1 if
and only if f−1(P ) is periodic of period n for φ2 (similarly for preperiodic
points). When φ1, φ2 and f are all defined over the same base field K,
then it is clear that the preperiodicity graphs of φ1 and φ2 are isomorphic.
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Therefore when classifying realizable graphs of rational functions defined
over Q we are actually interested in the Q-rational conjugacy classes of
quadratic rational functions rather than in the individual maps.

2.3. Post-critically finite quadratic rational functions. A rational
function φ : P1 → P1 is called post-critically finite (or PCF for short) if
all of its critical points are preperiodic. A rational function has exactly
2d− 2 critical points (counted with multiplicity; see [17], Section 1.2), and
a quadratic rational function has exactly 2 distinct critical points.

Lukas, Manes and Yap [9] provided a complete classification of all
quadratic post-critically rational functions over Q and their Q-conjugacy
classes, as well as all possible preperiodicity graphs of these functions. In
particular, they showed that a quadratic rational function defined over Q
with a Q-rational critical 3-cycle is PCF if and only if both of its critical
points lie in the same 3-cycle, and there is a unique conjugacy class of qua-
dratic rational functions (over Q) with this property, realizing the graph
R3P0 in Table 1.1.

3. Sufficiency of the nine inadmissibility graphs
Proposition 1. Assume Conjecture 2. Any quadratic rational function with
a rational critical 3-cycle that does not realize one of the graphs in Table 1.1,
must admit one of the graphs in Tables 1.2, 1.3 or 1.4.

Proof. We can arrange the graphs from Tables 1.1 through 1.4 in a Hasse
diagram with respect to the partial order of subgraph isomorphism:

N3H2 N3H3

N3E1 N3H1 N3M2 N3M1 N3E3 R3P5 N3M3

R3P2 R3P3 R3P4 N3E2

R3P1

Figure 3.1. Hasse diagram of inadmissible graphs

Due to the results of [9] mentioned in Section 2.3, we can restrict our-
selves to non-PCF (see Section 2.3) quadratic rational functions with a
rational critical 3-cycle. Lemma 3.2 in [3] implies that starting from the
critical cycle graph R3P1, one can obtain any realizable graph of a non-
PCF rational function defined with a rational critical 3-cycle, by recursively
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adding vertices and arrows to the graph using either of the following two
recursion steps:

(1) Adding a periodic cycle. We add a new cycle C to the graph. For
each vertex P in C we add a vertex Q not in the cycle and an arrow
Q→ P .

(2) Adding preimages to a non-periodic point. We add two vertices
Q1, Q2 and arrows Q1 → P,Q2 → P , where P is a vertex not
lying in any cycle in the graph.

Now it is easy to check that from any graph in the Hasse diagram, by
using one of the recursive steps we either generate a graph that is already
in the Hasse diagram, or contains (a subgraph isomorphic to) one of the
nine graphs in Tables 1.2, 1.3 or 1.4. �

4. Constructing dynamical modular curves from the graphs
4.1. Realizable graphs with a critical 3-cycle.

4.1.1. R3P0. Note that graph R3P0 implies that we have two points in
the 3-cycle which are critical. Since any quadratic rational function has
exactly two distinct critical points, this means any function admitting the
graph is post-critically finite (or PCF for short), i.e., all its critical points
are preperiodic.

As mentioned in Section 2.3, Lukas, Manes and Yap proved in [9] that
there is only one possible preperiodicity graph for a PCF quadratic rational
function with a critical three cycle, which is graph R3P0 in Table 1. More-
over, there is only one Q-conjugacy class of quadratic rational functions
that has this preperiodicity graph, with the following representative.

(4.1) φ0(z) = 1
(z − 1)2 .

4.1.2. R3P1. We can parametrize the non-PCF Q-conjugacy classes of
quadratic rational functions with a rational critical 3-cycle using the fol-
lowing map.

(4.2) a 7→ φa(z) = (a+ 1)z2 − az − 1
(a+ 1)z2 , a 6= 0,−1,−2.

For the special values a = 0,−2 we get representatives of the conjugacy
class realizing the graph R3P0.

In fact, given any rational function φ defined over Q with a Q-rational
critical 3-cycle, we can conjugate φ by an element of PGL2(Q) to move the
periodic critical point P to 0, its image to∞ and φ2(P ) to 1. One can then
check that we obtain a function φa for some a ∈ Q.
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0 ∞

1− 1
a+1

− 1
a

**

vv

VV55

rr

Figure 4.1. Preperiodicity graph of φa

The preperiodicity graph of φa where a 6= 0,−1,−2 will contain the
graph in Fig. 4.1; it is easy to check that the non-periodic preimages of 0
and 1 are − 1

a+1 and − 1
a , respectively.

4.1.3. R3P2. We take the parametrization φa of R3P1 and consider a
root b of the first dynatomic polynomial of φa. Such a root must correspond
to a fixed point of φa.
(4.3) Φ∗a,1(b) := Φ∗φa,1(b) = (1 + a)b3 + (−1− a)b2 + ab+ 1 = 0.

We solve this equation for a.

(4.4) a = − b3 − b2 + 1
b(b2 − b+ 1) .

We then substitute this into the expression for φa and get the following
parametrization of quadratic rational functions realizing R3P2.

(4.5) b 7→ φb(z) = (b− 1)z2 + (b3 − b2 + 1)z − b3 + b2 − b
(b− 1)z2 ,

where b cannot obtain the values 0, 1 in Q. We remark that φb degenerates
also when b is a root of b2 − b + 1 = 0, but for this case b 6∈ Q. Moreover,
the solutions to the equations

b3 − b2 + 1 = 0 and b3 − b2 + 2b− 1 = 0
determine a = 0 and a = 2, respectively, but these do not have Q-rational
solutions either.

Each map φb admits the graph in Fig. 4.2.

0 ∞

1− b3−b2+b
b−1

b3−b2+b
b3−b2+1

b2−b+1
b2−2b+1

b
**

vv

VV55

rr

77
��

Figure 4.2. Preperiodicity graph of φb

It is easy to check that

−b
3 − b2 + b

b− 1 ,
b3 − b2 + b

b3 − b2 + 1 and b2 − b+ 1
(b− 1)2
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are the non-periodic preimages of 0, 1 and b, respectively.

4.1.4. R3P3. We start again with φa parametrizing R3P1 (see
Section 4.1.2). Recall that −1/(a+1) is the non-periodic preimage of 0. Let
c be a preimage of −1/(a+1), i.e., φ(c) = − 1

a+1 . This implies the following
equation.
(4.6) (a+ 2)c2 − ac− 1 = 0.

We solve this equation for a.

(4.7) a = −2 c2 − 1
c2 − c

.

By substituting this expression for a, we get the following parametriza-
tion.

(4.8) c 7→ φc(z) =
(
c2 + c− 1

)
z2 −

(
2 c2 − 1

)
z + c2 − c

(c2 + c− 1)z2 ,

where c cannot obtain the values 0, 1 and 1
2 (at the latter value we get

a = −2). Moreover, c cannot be a solution to the equation

c2 + c− 1 = 0,
as φc degenerates for these values of c; this equation however has no rational
solutions. Similarly, for c2 = −1

2 we get a = 0, but again there are no
rational c satisfying this condition.

0 ∞

1c2−c
c2+c−1

c2−c
2c2−1

c

c−1
2c−1

**

vv

VV??

rr
$$
//

Figure 4.3. Preperiodicity graph of φc

Each map φc admits the graph in Fig. 4.3. It is easy to check that c−1
2c−1

is the second preimage of − 1
a+1 = c2−c

c2+c−1 , other than c.

4.1.5. R3P4. We start with φa realizing R3P1 and find the expression
for the second dynatomic polynomial of φa. A root of this polynomial is a
point of formal period 2 for φa.
(4.9) Φ∗a,2(z) := Φ∗φa,2(z) = (a+ 1)((a+ 1)z2 + (1− a)z − 1)

A formal point of period 2 for φa is not of period 2 only if it is of period 1
and so a root of the first dynatomic polynomial Φ∗a,1(z). One can find such
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points by computing the roots of the resultant of the first two dynatomic
polynomials.

Res(Φ∗a,1(z),Φ∗a,2(z)) = −(a+ 1)4(a2 + 2a+ 5)

We see that there are no Q-rational values of a which produce points of
formal period 2 but of actual period 1.

We see that any Q-rational periodic point d is of period 2 for φa if and
only if it is a solution of the following equation.

(4.10) (a+ 1)d2 + (1− a)d− 1 = 0.

We solve this equation for a.

(4.11) a = −d
2 + d− 1
d2 − d

.

We get the following parametrization for quadratic rational functions
admitting the graph R3P4.

(4.12) d 7→ φd(z) = (2d− 1)z2 − (d2 + d− 1)z + d2 − d
(2d− 1)z2 ,

where d cannot obtain the values 0, 1 and 1
2 . When d is a solution to the

equations
d2 + d− 1 = 0 and d2 − 3d+ 1 = 0

we get a = 0 and a = −2 respectively; these equations have no rational
solutions, however.

One can check that the non-periodic preimage of d is − d
d−1 and its pe-

riodic image is d−1
2d−1 . The non-periodic preimage of d−1

2d−1 is d−1
d . The non-

periodic preimage of 0 is d2−d
2d−1 and the non-periodic preimage of 1 is d2−d

d2+d+1 .
Thus the rational function φd admits the graph in Fig. 4.4.

0 ∞

1d2−d
2d−1

d2−d
d2+d−1

− d
d−1 d

d−1
2d−1

d−1
d

**

vv

VV55

rr

// ,,
jj oo

Figure 4.4. Preperiodicity graph of φc
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4.1.6. R3P5. We start with φd realizing R3P4. Recall that d is a periodic
point of period 2 and the value of its non-periodic preimage is − d

d−1 .
Let w be a preimage of − d

d−1 . Then φ(w) = − d
d−1 . This gives us the

following equation.

(4.13) (4d2 − 4d+ 1)w2 − (d3 − 2d+ 1)w + d3 − 2d2 + d = 0.

Four of the solutions to this equation correspond to degenerate maps φd.
These four points are

(d,w) = (0, 0), (0, 1), (1, 0), (1
2 , 1).

The discriminant of (4.13) with respect to w is:

∆ = d6 − 16d5 + 44d4 − 50d3 + 28d2 − 8d+ 1
= (d− 1)2(d4 − 14d3 + 15d2 − 6d+ 1)

Using the discriminant, we find that the affine plane curve defined by
(4.13) is birational to the affine plane curve defined by

(4.14) y2 = x4 − 14x3 + 15x2 − 6x+ 1,

where

(4.15) x = d, y = 2(4d2 − 4d+ 1)w − (d3 − 2d+ 1)
d− 1

or

(4.16) w = (d− 1)y + (d3 − 2d+ 1)
2(4d2 − 4d+ 1) .

We can simplify the curve defined by (4.14) further to get the elliptic
curve

(4.17) E : y2 + xy + y = x3 − x2.

This elliptic curve is curve 53a1 in the Cremona database (see [4]), it has
rank 1 with trivial torsion. We thus get infinitely many rational points on
the curve, and thus infinitely many non-linearly equivalent rational func-
tions defined over Q admitting graph R3P5 (only finitely many Q-rational
points on E will be mapped to degenerate solutions of (4.13)).
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4.2. Nonrealizable graphs with a critical 3-cycle.

4.2.1. N3E1. We start with the graph R3P1 by taking the parametriza-
tion φa we defined in Section 4.1.2. We recall that the general form of a
quadratic rational function admitting R3P1 is

(4.18) φa(z) = (a+ 1)z2 − az − 1
(a+ 1)z2 , a 6= 0,−1,−2.

We will show that the first dynatomic polynomial of φa cannot split
over Q. This immediately implies that a quadratic rational function with a
rational critical three-cycle can have at most one Q-rational fixed point.

The first dynatomic polynomial of φa is
(4.19) Φ∗a,1(z) := Φ∗φa,1(z) = (−a− 1)z3 + (a+ 1)z2 − az − 1.

In R3P2 we determined that a root b of this polynomial must satisfy

(4.20) a = − b3 − b2 + 1
b(b2 − b+ 1) .

A necessary and sufficient condition for the cubic polynomial Φ∗a,1 to split
over Q is for it to have a Q-rational root and for the discriminant to be a
square in Q. The latter condition is defined by the following equation.
(4.21) u2 = ∆(Φ∗a,1) = −3a4 − 16a3 − 50a2 − 60a− 23.

Substituting (4.20) into (4.21) we obtain
(4.22) v2 = (b− 1)(b3 + b2 − b+ 3),
where

v = b2(b2 − b+ 1)2u

2b3 − 4b2 + 2b− 1 .

The affine plane curve C defined by (4.22) is of genus 1. We denote by C
its projective closure in P2

[X:Y :Z] where b = X/Z and v = Y/Z. The curve
C contains (at least) the following two Q-rational points:

[0 : 1 : 0], [1 : 0 : 1].
It is birational to the elliptic curve with Cremona reference 19a3 with min-
imal model

E : y2 + y = x3 + x2 + x.

Remark 1. It is interesting to note that the elliptic curve with Cremona
reference 19a3 appears several times in the classification of preperiodic-
ity graphs of rational functions with a rational critical cycle. For example,
in [3] it is proven that it is birational to two modular curves of quite dis-
tinct graphs with critical 2-cycles (denoted there by N2E2 and N2E3), and
it appears again below in Section 4.3.2. Similarly, the elliptic curve with
Cremona reference 17a4 appears both for N3E3 below (see Section 4.2.3
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below) and for the proof of Proposition 4.3 in [3]. The elliptic curve with
Cremona reference 11a3 appears for N3E2 below (see Section 4.2.2 below)
and for the graph N2E1 in [3].

The birational map ψ : C → E is given by
ψ([X : Y : Z]) = [2Z2 − 2XZ,

X2 − 2XZ + Y Z + Z2,

−2X2 + 4XZ − 2Z2].
The rational points in the locus of indeterminacy of ψ are exactly the two

points we have already discovered on C. The elliptic curve E has Mordell–
Weil group of rank 0 and torsion subgroup isomorphic to Z/3Z. It therefore
contains only three rational points, which are

[0 : 0 : 1], [0 : 1 : 0], [0 : −1 : 1].
The preimages of these points under the birational map ψ, together with
ψ’s locus of indeterminacy give us the full set of points on C, and it turns
out that the two points we found on C are the only rational points on it.
Neither of these points corresponds to a non-degenerate quadratic rational
function φb.

As an aside, we prove the following.
Proposition 2. There exists a unique conjugacy class of quadratic rational
functions with a critical 3-cycle whose first dynatomic polynomial has a
square Q-rational discriminant.
Proof. The affine plane curve C1 described by (4.21) has genus 1, and it
is birational to the elliptic curve with Cremona reference 19a1 with the
following minimal model.
(4.23) E1 : y2 + y = x3 + x2 − 9x− 15.

We consider the projective closure C1 of C1 in P2
[X:Y :Z] where a = X

Z and
u = Y

Z . The birational map ψ : C1 → E1 is given by

ψ = [1491X3 + 4176X2Z − 133XY Z + 3821XZ2 − 114Y Z2 + 1146Z3,

533X3 + 2839X2Z + 171XY Z + 3891XZ2 + 95Y Z2 + 1565Z3,

−686X3 − 1764X2Z − 1512XZ2 − 432Z3].
The elliptic curve E1 has Mordell–Weil rank 0, and torsion subgroup

isomorphic to Z/3Z. The three rational points on E are
(4.24) [0 : 1 : 0], [5 : 9 : 1], [5 : −10 : 1].

The only rational preimages of these points under ψ, together with ψ’s
points of indeterminacy are the four points
(4.25) [−6/7 : −19/49 : 1], [−6/7 : 19/49 : 1], [0 : 1 : 0], [−1 : 0 : 1].
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These are therefore the only rational points on the curve C1. The third
point is at infinity and is therefore a “cusp” (a point added to the dynam-
ical modular curve to obtain a projective curve), while the fourth point
corresponds to the case a = −1 for which φa is a degenerate map.

It remains to check the case a = −6
7 . For this map we get the following

first dynatomic polynomial

(4.26) Φ∗− 6
7 ,1

(z) = −1
7(z3 − z2 − 6z + 7)

whose discriminant 361
2401 = (19

49)2 is a square in Q as expected. However,
this polynomial is irreducible and therefore φ− 6

7
has no Q-rational fixed

points. �

4.2.2. N3E2. We start with the parametrization φa of R3P1. Recall that
the non-periodic preimage of 1 is − 1

a . Assume that − 1
a has a preimage t,

i.e., φ(t) = − 1
a . This implies the following equation.

(4.27) a2t2 − a2t+ 2at2 + t2 − a = 0.

The curve C2 described by this equation is of genus 1. We take the
projective closure C2 of C2 in P2

[X:Y :Z] where a = X
Z and t = Y

Z . C2 contains
(at least) the following 4 rational points:

(4.28) [0 : 1 : 0], [0 : 0 : 1], [1 : 0 : 0], [−1 : 1 : 1].

The affine plane curve C2 is birational to the elliptic curve E with ref-
erence 11a3 in the Cremona database. Its minimal model is given by

(4.29) E : y2 + y = x3 − x2.

This elliptic curve has Mordell–Weil rank 0 and a torsion subgroup iso-
morphic to Z/5Z and 5 rational points:

(4.30) [0 : 1 : 0], [0 : 0 : 1], [0 : −1 : 1], [1 : 0 : 1], [1 : −1 : 1].

The birational map ψ : C2 → E is defined by

ψ = [XY 3 −XY 2Z + Y 3Z − Y Z3,

−XY 2Z + Y 3Z +XY Z2 − 2Y 2Z2 + Z4,

−Y 3Z].

The preimages of the rational points under ψ together with ψ’s points
of indeterminacy ([1 : 0 : 0], [0 : 1 : 0]) are the four points of C2 we have
already discovered. Therefore these are all the rational points on C2.

None of these points corresponds to a non-degenerate map φa, therefore
graph N3E2 is non-realizable.
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4.2.3. N3E3. We start the quadratic rational function φc parametrizing
R3P3 (note that we could also have started with R3P4).

(4.31) φc(z) =
(
c2 + c− 1

)
z2 −

(
2 c2 − 1

)
z + c2 − c

(c2 + c− 1)z2 , c 6= 0, 1, 1
2 .

We consider the second dynatomic polynomial for φc.

Φ∗c,2(z) := Φ∗φc,2(z) = (c4 + 2c3 − c2 − 2c+ 1)z2

+ (−3c4 − 2c3 + 5c2 − 1)z + c4 − 2c2 + c

This polynomial is divisible by c2 + c− 1; since the map φc degenerates
for the two values of c which are its roots, we can divide by it to get

(4.32) c2z2 − 3c2z + c2 + cz2 + cz − c− z2 + z = 0.

This equation describes a genus 1 affine plane curve which we will denote
by C3, and its projective closure in P2

[X:Y :Z] by C3, where c = X
Z and z = Y

Z .
The curve C3 contains (at least) the following 6 points:

(4.33) [1 : 1 : 1], [0 : 1 : 0], [0 : 0 : 1], [0 : 1 : 1], [1 : 0 : 0], [1 : 0 : 1].

This curve is birational to the elliptic curve

(4.34) E : y2 + xy + y = x3 − x2 − x

with Cremona reference 17a4. This curve has Mordell–Weil rank 0 and
torsion subgroup isomorphic to Z/4Z, and thus contains exactly four Q-
rational points which are

[0 : 0 : 1], [0 : 1 : 0], [0 : −1 : 1], [1 : −1 : 1].

The map ψ from C3 to E is defined by

ψ = [XY 3 − 4XY 2Z + 4XY Z2 + Y 2Z2 −XZ3 − 2Y Z3 + Z4,

XY 2Z − 3XY Z2 +XZ3 + Y Z3 − Z4,

−Y 3Z + 3Y 2Z2 − 3Y Z3 + Z4].

The points of indeterminacy of ψ are [0 : 1 : 1], [0 : 1 : 0], [1 : 0 : 0].
The preimages of the four rational points of E under ψ together with

ψ’s points of indeterminacy give us all the rational points of C3, and these
are exactly the six points that we have already discovered, none of which
correspond to non-degenerate quadratic rational functions.
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4.2.4. N3M1. We start with the parametrization φc of the graph R3P3.
Recall that c is a preperiodic point whose image under φc is the non-periodic
preimage of 0. Let w be a preimage of c under φc, i.e., φ(w) = c. This implies

(4.35) − c3w2 − 2c2w + 2cw2 + c2 − w2 − c+ w = 0

This equation describes an affine plane curve that we denote by C4, and
we denote its projective closure in P2

[X:Y :Z] by C4, where c = X
Z and w = Y

Z .
This curve is of genus 2 and contains (at least) the following five points.

(4.36) [0 : 1 : 0], [0 : 0 : 1], [0 : 1 : 1], [1 : 0 : 0], [1 : 0 : 1].

The curve C4 is birational to the hyperelliptic curve given by

(4.37) H : y2 = x6 − 2x5 + 3x4 − 4x3 − x2 + 2x+ 1.

The birational map ψ : C4 → H is defined by

ψ = [−XZ + Z2, 2X3Y Z2 + 2X2Z4 − 4XY Z4 + 2Y Z5 − Z6,−XZ].

The latter curve H contains the following points (in weighted homoge-
neous coordinates):

(4.38) [1 : −1 : 0], [1 : 1 : 0], [0 : −1 : 1], [0 : 1 : 1], [1 : 0 : 1].

The hyperelliptic curve has Jacobian with torsion subgroup isomorphic to
Z/15Z, and a rank bound computation in Magma [1] tells us the Jacobian
has Mordell–Weil rank 0.

The curve H has good reduction at 3, and therefore the Mordell–Weil
group of the Jacobian J(Q) of H injects into J(F3). Therefore all the maps
in the following commutative diagram are injective.

H(Q)

��

// J(Q)

��
H(F3) // J(F3)

However, one can easily check that the only rational points in H(F3)
are the reductions (mod 3) of the five points in H(Q) we have already
discovered. Therefore these five points are the only Q-rational points on H.

Using ψ we pull back these five points to C4, and together with the
indeterminacy points of ψ (these are [0 : 1 : 0], [1 : 0 : 0]) we find that the
only rational points on C are the five points we found before. None of these
points correspond to non-degenerate quadratic rational functions.
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4.2.5. N3M2. We start with the parametrization φc of the graph R3P3,
and consider a root w of its first dynatomic polynomial. Such a root must
correspond to a fixed point of φc.

Φ∗c,1(w) := Φ∗φc,1(w) =(−c2 − c+ 1)w3 + (c2 + c− 1)w2

+ (−2c2 + 1)w + c2 − c = 0.

We denote by C5 the affine plane curve defined by this equation, and by
C5 its projective closure in P2

[X:Y :Z], where c = X
Z and w = Y

Z . This is a
curve of genus 2 and contains (at least) the following four rational points

(4.39) [0 : 1 : 0], [0 : 0 : 1], [1 : 0 : 0], [1 : 0 : 1].

This curve is birational to the following hyperelliptic curve

(4.40) H5 : y2 = x6 − 2x5 + 5x4 − 6x3 + 10x2 − 8x+ 5.

The birational map ψ : C5 → H5 is defined by

ψ = [− Y Z + Z2,

2XY 3Z2 − 2XY 2Z3 + Y 3Z3 + 4XY Z4 − Y 2Z4 − 2XZ5 + Z6,

−Y Z].

One can use Magma to check that the Jacobian J of H5 has Mordell–
Weil torsion subgroup isomorphic to Z/5Z and rank 0. The curve H5 con-
tains (at least) the following two rational points (in weighted homogeneous
coordinates).

(4.41) [1 : −1 : 0], [1 : 1 : 0].

The Jacobian J contains (at least) the following rational points in Mum-
ford representation:

(1, 0, 0), (1, x3 − x2, 2), (1,−x3 + x2, 2),
(x2 − x+ 1, x− 1, 2), (x2 − x+ 1,−x+ 1, 2).

We denote by P+ = [1 : 1 : 0] and P− = [1 : −1 : 0], the two points
at infinity. Using this notation we get the following divisor representations
on H:

(1, 0, 0) ≡ identity,
(1, x3 − x2, 2) ≡ P+ − P−,

(1,−x3 + x2, 2) ≡ P− − P+,

(x2 − x+ 1, x− 1, 2) ≡ [α : −ᾱ : 1] + [ᾱ : −α : 1]− P+ − P−,
(x2 − x+ 1,−x+ 1, 2) ≡ [α : ᾱ : 1] + [ᾱ : α : 1]− P+ − P−,
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where α = 1
2 +

√
−3
2 . The only rational points appearing in these repre-

sentations are the two we already found, and therefore they are the only
rational points on H5.

Pulling back the two rational points of H5 under ψ and adding its inde-
terminacy points, we find all rational points on C5, and these are exactly
the four points we found before. None of these points correspond to non-
degenerate quadratic rational functions.

4.2.6. N3M3. We start with R3P4 and consider a root w of first dy-
natomic polynomial of φd (note that we can also start with R3P2 and look
at the second dynatomic polynomial of φb). Such a root corresponds to a
fixed point of φd.

Φ∗d,1(w) := Φ∗d,1(w) = (−2d+ 1)w3 + (2d− 1)w2

+ (−d2 − d+ 1)w + d2 − d = 0

The affine plane curve C6 described by this equation is of genus 2. We
denote its projective closure in P2

[X:Y :Z] by C6, where d = X
Z and w = Y

Z .
The curve C6 contains (at least) the following five rational points

(4.42) [0 : 1 : 0], [0 : 0 : 1], [1 : 2 : 2], [1 : 0 : 0], [1 : 0 : 1],

and is birational to the hyperelliptic curve

(4.43) H : y2 = x6 + 2x5 + 5x4 + 8x3 + 12x2 + 8x+ 4

under the map ψ : C6 → H defined by

ψ = [Z, 2Y 3 + 2XY Z − 2Y 2Z − 2XZ2 + Y Z2 + Z3,−Y ].

Using Magma one can compute that the hyperelliptic curve H has Ja-
cobian with Mordell–Weil torsion subgroup isomorphic to Z/2Z and rank
bounded by 1. The curve H contains (at least) the following six rational
points

(4.44) [1 : −1 : 0], [1 : 1 : 0], [−1 : −2 : 1], [−1 : 2 : 1], [0 : −2 : 1], [0 : 2 : 1].

We denote by P+ = [1 : 1 : 0] and P− = [1 : −1 : 0], the two points
at infinity. One can check that P+ − P− is of infinite order, and therefore
the Mordell–Weil rank of the Jacobian is exactly 1. Using the Chabauty–
Coleman/ Mordell–Weil sieving algorithm (see Bruin and Stoll [2]) imple-
mentation in Magma, we determine that the six points we have already
found are the only rational points on H. Pulling them back to C6, we find
(together with the indeterminacy point [1 : 0 : 0] of ψ) that the only ratio-
nal points on C6 are the five points we have already found. None of these
correspond to non-degenerate quadratic rational functions.
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4.2.7. N3H1. We start with R3P2. Recall that

(4.45) φb(z) = (b− 1)z2 + (b3 − b2 + 1)z − b3 + b2 − b
(b− 1)z2 , b 6= 0, 1

is a parametrization of R3P2, where b is the fixed point and b2−b+1
(b−1)2 is its

non-periodic preimage. Assume w is a preimage of b2−b+1
(b−1)2 , i.e., φb(w) =

b2−b+1
(b−1)2 . This implies

(4.46) bw2 − (b4 − 2b3 + b2 + b− 1)w + b4 − 2b3 + 2b2 − b = 0.

We denote by C7 the affine plane curve defined by this equation, and by
C7 its projective closure in P2

[X:Y :Z], where b = X
Z and w = Y

Z . The curve
C7 has genus 3, and contains (at least) the following rational points

(4.47) [0 : 1 : 0], [0 : 0 : 1], [1 : 0 : 0], [1 : 0 : 1].

The curve C7 is birational to the following hyperelliptic curve

(4.48) H : y2 = 4x7 − 11x6 + 14x5 − 7x4 − 2x3 + 6x2 − 4x+ 1.

The birational map ψ : C7 → H is defined by:

ψ = [−Z,X4 − 2X3Z +X2Z2 − 2XY Z2 +XZ3 − Z4, X − Z].

The curve H contains (at least) the following five points:

(4.49) [1 : 0 : 0], [0 : −1 : 1], [0 : 1 : 1], [1 : −1 : 1], [1 : 1 : 1].

Using Magma, one can compute that the curve H has Jacobian J with
Mordell–Weil rank 0, and torsion subgroup of order bounded by 72, and a
two-torsion subgroup isomorphic to Z/2Z.

Let P = [0 : −1 : 1], Q = [1 : −1 : 1]. The divisor class [P-Q] has order 36
in the Jacobian. This means that if the torsion subgroup has order 72 then
it is isomorphic to either Z/72Z or Z/36Z × Z/2Z. However, the second
option is ruled out by the structure of the two-torsion subgroup. Therefore
the only two options for the torsion subgroup are either Z/72Z or Z/36Z.

The image of [P−Q] under the map J(Q)→ J(F5) ∼= Z/72Z×Z/2Z is not
divisible by 2. In fact, under the identification of J(F5) with Z/72Z×Z/2Z,
[P −Q] is mapped to the element (38, 1), which is not divisible by 2.

Therefore the Mordell–Weil group is isomorphic to Z/36Z, and is gener-
ated by [P −Q]. The curve H has good reduction at 5 so that all the maps
in the following commutative diagram are injective.

H(Q)

��

// J(Q)

ı

��
H(F5) // J(F5)
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There are six points in H(F5) (given in weighted homogeneous coordi-
nates):

(4.50) [1 : 0 : 0], [0 : 1 : 1], [0 : 4 : 1], [1 : 1 : 1], [1 : 4 : 1], [2 : 0 : 1].

Of these points, only the five points [1 : 0 : 0], [0 : 1 : 1], [0 : 4 : 1], [1 : 1 :
1], [1 : 4 : 1] map to the image of the map ı in the diagram, and these exactly
correspond to the five points we know on H. Since the map H(Q)→ H(F5)
is injective, this proves that these are the only rational points on H.

Combining the preimages of ψ together with its locus of indeterminacy,
we find all rational points on C7, and these are exactly the four points we
already discovered. None of these four points correspond to φb admitting
the graph N3H1.

4.2.8. N3H2. For the proof that the graph N3H2 is non-admissible (up
to standard conjectures) see the appendix by M. Stoll.

4.2.9. N3H3. We start with R3P5. Recall that graph R3P4 had the
parametrization

(4.51) φd(z) = (2d− 1)z2 − (d2 + d− 1)z + d2 − d
(2d− 1)z2 , d 6= 0, 1, 1

2 ,

where d is a periodic point of (formal) period 2, and the graph R3P5 was
represented by the following additional condition.

(4.52) (4d2 − 4d+ 1)w2 − (d3 − 2d+ 1)w + d3 − 2d2 + d = 0.

The point w was such that φ2(w) = d and φ(w) is non-periodic. The
second periodic point of period 2 is d−1

2d−1 and its non-periodic preimage is
d−1
d . Let u be a rational preimage of d−1

d , i.e., φ(u) = d−1
d . This implies

(4.53) (2d− 1)u2 − (d3 + d2 − d)u+ d3 − d2 = 0.

Together with (4.52), we get the following affine space curve parametriz-
ing the graph N3H3:

(4.54) C1 :
{

(4d2 − 4d+ 1)w2 − (d3 − 2d+ 1)w + d3 − 2d2 + d = 0
(2d− 1)u2 − (d3 + d2 − d)u+ d3 − d2 = 0.

Using the discriminant (with respect to u) we can bring the second equa-
tion to the form

(4.55) v2 = d4 + 2d3 − 9d2 + 10d− 3

where

(4.56) v = (4d− 2)u− (d3 + d2 − d)
d

,
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and we have already seen in Section 4.1.6 that (4.53) can be transformed
in a similar way to

(4.57) y2 = d4 − 14d3 + 15d2 − 6d+ 1.

Thus the curve C1 is birational to a curve C2 in A3
(d,y,v) defined by

(4.58) C2 :
{
y2 = d4 − 14d3 + 15d2 − 6d+ 1
v2 = d4 + 2d3 − 9d2 + 10d− 3.

The curve C2 is of genus 5, and is a double-cover of the following curve:

(4.59) H1 : s2 = (d4 − 14d3 + 15d2 − 6d+ 1)(d4 + 2d3 − 9d2 + 10d− 3).

The curve H1 has genus 3, and its equation can be simplified to the
following model:

(4.60) H2 : y2 = −3x8 + 4x7 − 2x6 − 16x5 + 11x4 + 16x3 − 2x2 − 4x− 3.

This curve has automorphism group Z/2Z × Z/2Z. When quotienting
the curve by the automorphism [Z : −Y : −X], we get the following curve:

(4.61) H3 : y2 = −3x6 + 4x5 − 26x4 + 12x3 − 55x2 − 16x+ 4.

This genus 2 hyperelliptic curve contains (at least) the following two
points:

(4.62) P1 = [0 : −2 : 1], P2 = [0 : 2 : 1].

Using Magma, one can compute that H3 has Jacobian with Mordell–
Weil rank bounded by 1, and torsion subgroup isomorphic to Z/2Z. The
divisor class [P1 − P2] has infinite order in the Jacobian, and therefore
generates a finite index subgroup of the Mordell–Weil group. We can use the
implementation of the Chabauty–Coleman/Mordell–Weil sieving algorithm
(cf. Bruin and Stoll [2]) in Magma, and find that the only rational points
on the curve are the two points we had already discovered.

We pull these two points all the way back C1 to find the complete set of
rational points on the latter curve (not including 4 points at infinity):

(1
2 , 1, 1), (1, 0, 0), (0, 0, 0), (1, 1, 0), (0, 0, 1).

None of these points have a d value corresponding to a quadratic rational
function φd realizing N3H3.
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4.3. Support for Conjecture 1.

4.3.1. Extra 3-cycle. We compute the 3-rd dynatomic polynomial of φa.

Φ∗a,3(z) := Φ∗φa,3(z) = (a5 + 5a4 + 10a3 + 10a2 + 5a+ 1)z5

+ (−2a5 − 7a4 − 9a3 − 4a2 + a+ 1)z4

+ (a5 − 7a3 − 13a2 − 10a− 3)z3

+ (2a4 + 5a3 + 4a2 + a)z2

+ (a3 + 3a2 + 3a+ 1)z
We divide the dynatomic polynomial by the factor (a + 1)z(z − 1) to get
the irreducible polynomial
P3 := a3z3− a3z2 + 3a2z3− 2a2z+ 3az3 + 2az2− 2az− a+ z3 + 2z2− z− 1

The curve C3 defined by the equation P3 = 0 contains the four points
[0 : 1 : 0], [−1 : 0 : 1], [1 : 0 : 0], [−1 : 1 : 1].

Furthermore, C3 is birational to the genus 2 hyperelliptic curve defined
by

H3 : y2 = x6 − 4x5 + 6x4 − 2x3 + x2 − 2x+ 1
Using Magma, we can check that H3 has Jacobian of Mordell–Weil rank

0. The curve H3 has good reduction modulo 3, and its reduction has Jaco-
bian isomoprphic to the group Z/19Z. This means that Mordell–Weil group
(of the Jacobian) of H3 is either trivial or isomorphic to Z/19Z. However,
one can check that the element on the Jacobian defined by the difference of
the two points at infinity [1 : −1 : 0]− [1 : 1 : 0] has order 19 and therefore
the Jacobian of H3 is isomorphic to Z/19Z.

We get the following commutative diagram where all the maps are injec-
tive.

H3(Q)

��

// J(Q)

��
H3(F3) // J(F3)

We check that
H3(F3) = {[1 :−1 : 0], [1 : 1 : 0], [0 :−1 : 1], [0 : 1 : 1], [1 :−1 : 1], [1 : 1 : 1]}.

All of these points are reductions of points from H3(Q), and this implies
that the Q-rational points on H3 are exactly the six points

[1 : −1 : 0], [1 : 1 : 0], [0 : −1 : 1], [0 : 1 : 1], [1 : −1 : 1], [1 : 1 : 1].
We pull these points back to C3, to find that the only rational points on

C3 are the four points we already discovered. None of which correspond to
non-degenerate maps φa.
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4.3.2. Extra 4-cycle. We compute the 4th dynatomic polynomial of φa,
and divide by a factor of (a+ 1)4, to get the following polynomial.

P4(a, t) := (a6 + 6a5 + 15a4 + 20a3 + 15a2 + 6a+ 1)z12

+ (−2a7− 19a6− 64a5− 107a4− 98a3− 49a2− 12a− 1)z11

+ (a8 + 16a7 + 77a6 + 152a5 + 128a4 + 16a3− 46a2− 30a− 6)z10

+ (−3a8− 27a7− 58a6 + 38a5 + 248a4 + 304a3 + 165a2 + 41a+ 4)z9

+ (3a8 + 8a7− 61a6− 239a5− 240a4− 8a3 + 111a2 + 59a+ 9)z8

+ (−a8 + 11a7 + 64a6 + 10a5− 251a4− 317a3− 126a2− 8a+ 2)z7

+ (−6a7 + 12a6 + 128a5 + 133a4− 94a3− 153a2− 48a− 1)z6

+ (−16a6− 5a5 + 130a4 + 156a3− a2− 42a− 8)z5

+ (−25a5− 26a4 + 78a3 + 94a2 + 12a− 7)z4

+ (−25a4− 31a3 + 26a2 + 33a+ 5)z3

+ (−16a3− 20a2 + 2a+ 5)z2

+ (−6a2− 7a− 1)z− a− 1.

The equation P4 = 0 describes an affine plane curve of genus 12 which
we denote by C4. We follow the trace map method described in [14]: Let

tr4(z) = z + φ(z) + φ2(z) + φ3(z).

The image of the curve C4 under the map Ψ : (a, z) 7→ (a, tr4(z)) is bira-
tional to the quotient curve C4/ 〈σ〉, where σ is the automorphism of C4
defined by (a, z) 7→ (a, φ(z)). When φ is a polynomial, the image of Ψ can
be calculated by taking the resultant of Φ∗a,4(z) and t− tr4(z) with respect
to z. However, in our case t − tr4(z) is not a polynomial, since tr4(z) is a
rational function in z. We fix this by clearing out the denominator of tr4(z);
we denote the numerator of tr4 by A and the denominator by B.

We compute the resultant Res(P4, Bt − A) and find the following irre-
ducible factor.

P̃4(a, t) = a7t− 2 a6t2 + a5t3 − a7 + 13 a6t− 17 a5t2 + 5 a4t3

− 7 a6 + 53 a5t− 47 a4t2 + 10 a3t3 − 6 a5 + 80 a4t

− 60 a3t2 + 10 a2t3 + 43 a4 + 42 a3t− 38 a2t2 + 5 at3

+ 95 a3 − 10 a2t− 11 at2 + t3 + 89 a2 − 19 at− t2 + 42 a− 6 t+ 9

The degree 8 curve defined by P̃4 = 0 is of genus 1. It is birational
to the elliptic curve with Cremona reference 19a3 (this curve has already
been encountered as being birational to the modular curve of N3E1, see the
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remark in Section 4.2.1), and has the following minimal model
y2 + y = x3 + x2 + x.

Its Mordell–Weil group is isomorphic to Z/3Z and therefore there are
exactly three rational points on this elliptic curve. These are

[0 : 0 : 1], [0 : 1 : 0], [0 : −1 : 1].
Pulling these points back to the curve C4/ 〈σ〉, we find all rational points

on C4/ 〈σ〉 to be
[0 : 1 : 0], [1 : 0 : 0], [1 : 1 : 0].

All these points are “cusps” (the points added to the dynamical modular
curve to make it projective), and therefore we can conclude that there are
no quadratic rational functions φa with a 4-cycle.
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Appendix. Rational points on a curve of genus 6
par Michael Stoll

Abstract. We determine the set of rational points on the curve of genus 6
that parameterizes quadratic maps φ : P1 → P1 with an orbit of length 3
containing a critical point and a point P such that φ◦3(P ) has order 2 (but
φ◦2(P ) is not periodic). The result is conditional on standard conjectures
(including BSD) on the L-series of the Jacobian of the curve in question.

A.1. Introduction. We consider the curve C that classifies (up to con-
jugation by an automorphism of P1) quadratic maps φ : P1 → P1 such that

(1) φ has a cycle of length 3 containing a critical point, and
(2) φ has a cycle of length 2, together with a marked third preimage

of one of the two points in the cycle (whose second image is not in
the cycle).

(See the introduction of the main article for the definitions of a critical
point and n-cycle). These are exactly the type of maps described by the
graph N3H2 in Table 4 of the main article. The goal is to show that no such
(non-degenerate) φ are defined over Q, which is equivalent to showing that
all the rational points on C correspond to degenerate maps φ. To this end,
we first derive an equation for C as a singular affine plane curve, then we
construct its canonical model in P5, which is a smooth projective curve D
birational to C. Finally, we determine D(Q) (to be able to do this, we have
to assume some standard conjectures regarding the L-series of the Jacobian
of D, including the BSD conjecture) and map the points back to C.

The arguments and computations are to a large extent parallel to those
performed in [21] in a similar situation, so we give here a condensed de-
scription and refer the reader to [21] for more information.

A.2. The curve and its canonical model. We can fix the critical 3-
cycle to be 0 7→ ∞ 7→ 1 7→ 0 with 0 the critical point (see Section 4.1.2 in
the main article for details). Then

φ(z) = (a+ 1)z2 − az − 1
(a+ 1)z2

with a parameter a. The condition for the existence of a rational 2-cycle is
then that (a+ 1)2 + 4 is a square. The conic given by this condition can be
parameterized, leading to

a = − 4t
t2 − 1 − 1

and

φt(z) = 4tz2 − (t2 + 4t− 1)z + t2 − 1
4tz2 ;
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the 2-cycle contains the two points t+1
2 and t−1

2t , which are swapped by
the automorphism (on the parameter space) t 7→ −1/t. φt degenerates for
t = −1, 0, 1,∞.

The other preimage of t+1
2 is − t+1

t−1 . We will require it to have a rational
second preimage. The requirement of a rational (first) preimage results
in a curve that is birational to the elliptic curve E with label 53a1 in
the Cremona database, whose Mordell–Weil group is Z (This is the curve
parametrizing rational functions admitting the graph R3P5 in Table 1 of the
main article; see Section 4.1.6 there). Requiring a second rational preimage
results in a double cover of this curve, which (from setting φ◦2t (z) = − t+1

t−1)
can be given by the affine equation

16t2(t+ 1)z4 + (t2 + 4t− 1)(t3 − 13t2 − 5t+ 1)z3

+ (t5 + 29t4 + 34t3 − 30t2 − 3t+ 1)z2

− 4(t− 1)t(t+ 1)(t2 + 4t− 1)z + 2(t− 1)2t(t+ 1)2 = 0.

A quick computation in Magma [19] shows that (the smooth projective
model of) this curve has genus g = 6. Setting

t = u+ 1
u− 1 and z = 1

1− v
results in the simpler equation

F (u, v) := u5v2 + 2u4v3 − u4v2 − u4v + u3v4 − 4u3v2 + u3

+ u2v4 − 4u2v3 + 3u2v − 2uv3 + 4uv2 − u+ v2 − v = 0

for our curve C. In terms of u and v, the involution corresponding to the
double cover C → E is given by (u, v) 7→ (u, u−1 − 1− u− v).

Set
ω0 = du

∂F
∂v (u, v)

= − dv
∂F
∂u (u, v)

.

Then the following differentials are a basis of the space of regular differen-
tials on C:

ω1 = (u3v + u2v2 − 2u2v − uv2 + v)ω0,

ω2 = (u2v + uv2 − uv − v)ω0,

ω3 = uvω0,

ω4 = (u2 − u)ω0,

ω5 = (u− 1)ω0,

ω6 = ω0.

The projective closure D of the image of the corresponding canonical map
C → P5 (with coordinates w1, . . . , w6) is then defined by the following six
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quadratic equations:
−w2w5 + w1w6 = 0,

−w2w4 + w1w5 + w2w5 = 0,
−w2

5 + w4w6 − w5w6 = 0,
−w2

3 − w3w4 + w1w6 + w2w6 + w3w6 = 0,
w2

1 + 2w1w2 − w1w4 − w2w4 + w2
4 − w1w5 + w4w5 = 0,

w1w2 + 2w2
2 − w2w4 − w2w5 + w4w5 + w2

5
− w1w6 − w2w6 + w4w6 + w5w6 = 0.

The birational map D → C is given by

u = w4 + w5 + w6
w5 + w6

, v = w3
w5 + w6

.

Using the PointSearch command of Magma, we find the following nine
rational points on D:

P1 = (0 : 0 : 0 : 2 : −2 : 1), P6 = (−2 : 1 : 0 : 0 : 0 : 0),
P2 = (0 : 0 : 1 : 0 : 0 : 1), P7 = (0 : 0 : 0 : 0 : 0 : 1),
P3 = (0 : 0 : −1 : 2 : −2 : 1), P8 = (0 : 0 : 1 : 0 : −1 : 1),
P4 = (0 : 0 : 0 : 0 : −1 : 1), P9 = (1 : −1 : 1 : 0 : −1 : 1).
P5 = (1 : −1 : 0 : 0 : −1 : 1),

We suspect that these are all the rational points. The proof of this claim
will take up the remainder of this appendix.

We note that the images of these points on C are (−1, 0), (1, 1), (−1, 1),
(0, 0), (0, 1), a point at infinity, (1, 0), and two times a point at infinity.
Since u = −1, 0, 1,∞ gives a degenerate φ and v = ∞ gives z = 0, which
also makes φ degenerate, this will imply that there are no non-degenerate φ
defined over Q with the required properties.

A.3. The Jacobian. Working with the equations for D ⊂ P5, we find
that D has bad reduction (at most) at the primes 3, 53 and 99 563. In
each of these cases, the reduction is semistable, with a single component
in the special fiber that has one split node for p = 3, two non-split nodes
each defined over F53 for p = 53, and one split node for p = 99 563. (A
node is split, if the two tangent directions are defined over the field of
definition of the node.) SoD is semistable, and its Jacobian J has conductor
NJ = 3 · 532 · 99 563. Since D maps non-trivially to the elliptic curve E of
conductor 53, J is isogenous to a product E × A, where A is an abelian
variety over Q of dimension 5 and with conductor NA = 3 · 53 · 99 563 =
15 830 517.
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With a computation analogous to that leading to Lemma 4 in [21], we
find that the torsion subgroup of J(Q) has exponent dividing 2 (we did
not try to find the torsion subgroup exactly) and that the differences of
the nine known rational points on D generate a subgroup isomorphic to Z2

of J(Q). So if we can show that J(Q) has rank 2, then we know generators
of a subgroup of finite index (and the rank is strictly less than the genus),
so we can apply the Chabauty–Coleman method.

Since there is little hope to perform a successful Selmer group compu-
tation on J , which would give an upper bound for the rank, we follow the
approach already used in [21] and assume that the L-series of J has an
analytic continuation to all of C, that the function

Λ(J, s) = N
s/2
J (2π)−6sΓ(s)6L(J, s)

satisfies the functional equation Λ(J, 2 − s) = wJΛ(J, s) with the global
root number wJ = ±1, and that the Birch and Swinnerton–Dyer con-
jecture holds for J . For the computations, it is better to work with the
L-series of A, since its conductor NA is smaller than NJ . According to
Magma’s implementation of L-series, it requires the coefficients of L(A, s)
up to n ≈ 105 000 for a precision of 20 decimal digits. We find the coeffi-
cients of the Euler factors of the L-series of J up to the required bound by
counting the Fq-points on D for all prime powers q below the bound. This is
most efficiently done on the affine model C, by keeping track of the points at
infinity modulo p and of what happens at the singular points (and some care
has to be taken at the bad primes). In this way and after dividing by the Eu-
ler factors of E, we obtain within a few hours the relevant coefficients for the
computation. We then check (using Magma’s CheckFunctionalEquation)
that the data we have computed is compatible with the expected functional
equation for L(A, s) with root number wA = −1 (but not with wA = 1).
So we can safely assume that L(J, s) satisfies the functional equation with
root number wJ = wAwE = (−1)(−1) = 1. This is also in agreement with
the expectation that the global root number should be equal to the product
of the local root numbers, which in the semistable case is (−1)g+s, where
s is the total number of Frobenius orbits of split nodes. Here g = 6 and
s = 2, so the root number should indeed by 1. We then evaluate the de-
rivative of L(A, s) at s = 1 numerically and find a clearly nonzero value of
≈ 0.026803015530623712948. So according to the BSD conjecture, the rank
of A(Q) should be 1 and the rank of J(Q) should therefore be 2.

A.4. Applying the Chabauty–Coleman method. By the results of
the previous section (assuming BSD for J), we now know that the differ-
ences of the known rational points provide us with generators of a finite-
index subgroup of J(Q). To apply Chabauty–Coleman, we have to fix a
prime p. We choose p = 5, because 5 is a prime of good reduction and the
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set of known rational points maps bijectively to the points in D(F5) under
reduction. This latter observation implies that it will be enough to show
that each residue class mod 5 in D(Q5) contains at most one rational point.
By the results of [20], this follows when we can show that for each point
in D(F5), there is a differential in the annihilator of J(Q) whose reduction
mod 5 does not vanish there.

We first have to find a basis of this annihilator in the space of regular
differentials on D over Q5. We first fix one of our known rational points P
as a base-point; we have to choose it in such a way that its reduction P
mod 5 is non-special in the sense that the Riemann–Roch space of 6P is
one-dimensional. We check that P4 satisfies this requirement. We then use
the reduction map J(Q) → J(F5) to find two independent points in its
kernel, which we represent by divisors of the form Dj − 6P4, where D1
and D2 are effective of degree 6. Since P 4 is non-special, it follows that
Dj reduces mod 5 to 6P 4 for j = 1, 2. We choose t = 1 + w5/w6 as a
uniformizer at P4 (that reduces to a uniformizer at P 4), express the differ-
entials ω1, . . . , ω6 as power series in t times dt, integrate formally, and use
the method explained in [21] to compute the relevant integrals modulo 53

(modulo 52 would actually be sufficient). They are all multiples of 5, so
we divide them by 5 and reduce the 2 × 6-matrix obtained modulo 5. Its
kernel gives the reduction of annihilator, which in our case is generated by
the reductions of ω1 + ω4, ω2 − ω4, ω5 and ω6. Since the locus of vanishing
of a linear combination of the ωj on D is given by the corresponding hy-
perplane section, all we have to do is to check that the line defined in P5

F5
by w1 + w4 = w2 − w4 = w5 = w6 = 0 does not meet DF5 , which is easily
verified. This concludes the proof.

References for the Appendix
[19] W. Bosma, J. Cannon & C. Playoust, “The Magma algebra system. I. The user language”,

J. Symb. Comput. 24 (1997), no. 3-4, p. 235-265.
[20] M. Stoll, “Independence of rational points on twists of a given curve”, Compos. Math. 142

(2006), no. 5, p. 1201-1214.
[21] ———, “Rational 6-cycles under iteration of quadratic polynomials”, LMS J. Comput.

Math. 11 (2008), p. 367-380.

Solomon Vishkautsan
Tel-Hai Academic College, Israel
E-mail: wishcow@gmail.com
URL: http://wishcow.com

Michael Stoll
Mathematisches Institut, Universität Bayreuth, 95440 Bayreuth, Germany
E-mail: Michael.Stoll@uni-bayreuth.de
URL: http://www.computeralgebra.uni-bayreuth.de

mailto:wishcow@gmail.com
http://wishcow.com
mailto:Michael.Stoll@uni-bayreuth.de
http://www.computeralgebra.uni-bayreuth.de

	1. Introduction
	Acknowledgments

	2. Preliminaries
	2.1. Dynatomic polynomials
	2.2. Linear equivalence of rational functions
	2.3. Post-critically finite quadratic rational functions

	3. Sufficiency of the nine inadmissibility graphs
	4. Constructing dynamical modular curves from the graphs
	4.1. Realizable graphs with a critical 3-cycle
	4.2. Nonrealizable graphs with a critical 3-cycle
	4.3. Support for Conjecture 1

	References
	Appendix. Rational points on a curve of genus 6  par Michael Stoll
	A.1. Introduction
	A.2. The curve and its canonical model
	A.3. The Jacobian
	A.4. Applying the Chabauty–Coleman method

	References for the Appendix

