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Journal de Théorie des Nombres
de Bordeaux 30 (2018), 1059–1084

Explicit L-functions and a Brauer–Siegel theorem
for Hessian elliptic curves

par Richard GRIFFON

Résumé. Étant donné un corps fini Fq de caractéristique p ≥ 5, nous
considérons la famille de courbes elliptiques Ed définies sur K = Fq(t) par
Ed : y2 + xy − tdy = x3, pour tout entier d ≥ 1 qui est premier à q.

Nous donnons une expression explicite des fonctions L de ces courbes. De
plus, nous déduisons de ce calcul que les courbes Ed satisfont un analogue du
théorème de Brauer–Siegel. Plus spécifiquement, nous montrons que, lorsque
d→∞ parcourt les entiers premiers à q, l’on a

log (|X(Ed/K)| · Reg(Ed/K)) ∼ logH(Ed/K),
où H(Ed/K) désigne la hauteur différentielle exponentielle de Ed, X(Ed/K)
son groupe de Tate–Shafarevich et Reg(Ed/K) son régulateur de Néron–Tate.

Abstract. For a finite field Fq of characteristic p ≥ 5 and K = Fq(t), we
consider the family of elliptic curves Ed over K given by y2 + xy − tdy = x3

for all integers d coprime to q.
We provide an explicit expression for the L-functions of these curves. More-

over, we deduce from this calculation that the curves Ed satisfy an analogue
of the Brauer–Siegel theorem. Precisely, we show that, for d → ∞ ranging
over the integers coprime with q, one has

log (|X(Ed/K)| · Reg(Ed/K)) ∼ logH(Ed/K),
where H(Ed/K) denotes the exponential differential height of Ed, X(Ed/K)
its Tate–Shafarevich group and Reg(Ed/K) its Néron–Tate regulator.

Introduction

Let Fq be a finite field of characteristic p ≥ 5, and K = Fq(t). For
a nonisotrivial elliptic curve E over K, we denote by L(E/K, T ) its L-
function: it is a priori defined as a formal power series in T . Deep theorems
of Grothendieck and Deligne, however, show that L(E/K, T ) is actually
a polynomial with integral coefficients, satisfying the expected functional
equation (relating its behaviour at T to that at 1/q2T ), whose degree is
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given in terms of the conductor of E, and for which the Riemann Hypothesis
holds (i.e., complex zeros z of L(E/K, T ) have magnitude |z| = q−1).

In general, these facts are not sufficient to study finer analytic and arith-
metic questions about E. For example, a general study of the distribution
of zeros of T 7→ L(E/K, T ) on the circle {z ∈ C : |z| = q−1} on which
they lie appears to be out of reach at the moment. In the meantine, partial
evidence could be gathered by studying special families of elliptic curves
E/K for which L(E/K, T ) is explicitly known.

Our first goal in this article is thus to exhibit a new infinite family for
which the L-functions can be explicitly calculated. Specifically, for any in-
teger d ≥ 1 coprime to q, consider the Hessian elliptic curve Ed over K,
whose affine Weierstrass model is:
(0.1) Ed : y2 + xy − td · y = x3.

The curve Ed can be viewed as the pullback under the Kummer map t 7→ td

of E1; the family {Ed}d≥1,(d,q)=1 is therefore called the Kummer family built
from E1. We are thus studying a Kummer family of “universal” elliptic
curves equipped with a rational 3-torsion point (much like the “Legendre
curves” studied in [20, 2] form a Kummer family of universal elliptic curves
with rational 2-torsion).

To give a flavour of our result (Theorem 3.1) without having to intro-
duce too much notation, we restrict in this paragraph to the case where
d divides |F×q | = q − 1: by cyclicity of F×q , we can choose a character χ :
F×q → Q× of exact order d. In that case, our calculation yields:

Theorem A. For any integer d dividing q − 1, the L-function of Ed/K is
given by:

L(Ed/K, T ) =
d−1∏
k=1

3k 6≡0 mod d

(1− Jk · T ) ∈ Z[T ],

where, for all k ∈ {1, . . . , d− 1}, we have set

Jk :=
∑

x1,x2,x3∈Fq

x1+x2+x3=1

χk (−x1x2x3) .

In Theorem 3.1, we provide a similar formula for L(Ed/K, T ) under the
much lighter assumption that d be coprime to the characteristic of K. In
this more general setting, one has to account for the nontrivial action of
Gal(Fq/Fq) on the dth roots of unity in Fq, which leads to mild technical
complications (see Sections 2 and 3).

We hope that the explicit expression for L(Ed/K, T ) can be of use for
several applications. For example, using Theorem 3.1, one could reprove a
result of Ulmer stating that as d ≥ 2 ranges through integers coprime to
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q, the ranks of the Mordell–Weil groups Ed(K) are unbounded (see [18,
§2-§4]).

In Sections 4 and 5, we then use our explicit knowledge of L(Ed/K, T )
to prove the following asymptotic estimate (see Theorem 5.5):

Theorem B. Let Fq be a finite field of characteristic p ≥ 5, and K = Fq(t).
For any integer d coprime with q, consider the Hessian elliptic curve Ed/K
as above. Then the Tate–Shafarevich group X(Ed/K) is a finite group and,
as d→∞, one has
(0.2) log (|X(Ed/K)| · Reg(Ed/K)) ∼ logH(Ed/K),
where Reg(Ed/K) denotes the Néron–Tate regulator of Ed, and H(Ed/K)
its exponential differential height.

From the computation of H(Ed/K), one further gets that
log (|X(Ed/K)| · Reg(Ed/K)) ∼ log q

3 · d (as d→∞),
showing that the product |X(Ed/K)|·Reg(Ed/K) grows exponentially fast
with d; see [9] for an interpretation of this fact in terms of the “complexity
of computing” the Mordell–Weil group Ed(K).

Theorem B can also be restated as:
∀ ε > 0, H(Ed/K)1−ε �q,ε |X(Ed/K)| · Reg(Ed/K)�q,ε H(Ed/K)1+ε.

The upper bound here essentially proves a conjecture of Lang (the formula-
tion for elliptic curves over Q is [11, Conj. 1]). Better still, our lower bound
reveals that the exponent 1 is optimal (i.e., no smaller exponent would work
in the upper bound).

Remark 0.1. The Brauer–Siegel theorem asserts that when k runs through
a sequence of number fields whose degrees over Q are bounded and such
that the absolute values ∆k of their discriminants tend to +∞, one has the
asymptotic estimate
(0.3) log

(
|Cl(k)| · Reg(k)

)
∼ log

√
∆k (as ∆k →∞),

where Cl(k) denotes the class-group of k and Reg(k) its regulator of units
(see [12, Chap. XVI]). At least in their formal structure, (0.2) and (0.3)
look very similar and, following [10], we view Theorem B as an analogue of
the Brauer–Siegel theorem for the Hessian elliptic curves.

Note that, at present, there are only a handful of examples of families
of elliptic curves for which (0.2) is known to hold. More specifically, there
are six elliptic curves E(i)

1 over K = Fq(t) (with i = 1, . . . , 6) such that
the Kummer families {E(i)

d }d≥1,(d,q)=1 built from E
(i)
1 satisfy a complete

(and unconditional) analogue of the Brauer–Siegel theorem: the reader is
referred to [10, Thm. 1.4], [5, Thm. 1.1], and [4] for four more examples.
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The author has recently constructed an Artin–Schreier family of elliptic
curves over K for which (0.2) also holds (see [6]).

Let us give a rough sketch of how we prove Theorem B. General results of
Ulmer for elliptic curves in “Kummer towers” imply that for all d as above,
Ed/K satisfies the Birch and Swinnerton–Dyer conjecture1 (see [18, §6]). In
particular, the Tate–Shafarevich group X(Ed/K) is finite and, by bounding
some of the terms appearing in the “BSD formula” (see Corollary 1.6), we
will see in Corollary 5.4 that
log

(
|X(Ed/K)| · Reg(Ed/K)

)
logH(Ed/K) = 1+ logL∗(Ed/K, 1)

logH(Ed/K) +o(1) (as d→∞),

where L∗(Ed/K, 1) denotes the special value of L(Ed/K, T ) at T = q−1 (i.e.,
the first nonzero coefficient in the Taylor expansion of T 7→ L(Ed/K, T ) at
T = q−1, see (4.1)). Given this link with L∗(Ed/K, 1), proving the esti-
mate (0.2) is equivalent to the more analytic problem of showing that

(0.4)
∣∣∣∣ logL∗(Ed/K, 1)

logH(Ed/K)

∣∣∣∣ = o(1) (as d→∞).

In a previous article [7], we have proved bounds on special values of L-
functions of a certain type. Since L(Ed/K, T ) is explicitly known, we can
check that it has the correct shape to apply these results. We derive upper
and lower bounds that are enough to ensure that (0.4) holds (see Section 4).

The paper is organized as follows. We begin by giving, in Section 1, a
detailed presentation of the curves Ed and we compute the relevant invari-
ants: height, conductor, torsion subgroup and Tamagawa number. The next
two sections are devoted to the calculation of the L-functions of Ed: Sec-
tion 2 introduces the necessary notation and tools while Section 3 contains
the result and its proof. Finally, we show the analogue of the Brauer–Siegel
theorem for Ed: we prove the necessary bounds on the special value in
Section 4, before recalling the BSD conjecture and concluding the proof of
Theorem B in Section 5.

Notation. For two functions f(x), g(x) defined on [0,∞), we use Vino-
gradov’s “f(x) �a g(x)” notation to mean that there exists a constant
C > 0 depending at most on the mentioned parameters a such that |f(x)| ≤
Cg(x) for x → ∞. Unless otherwise stated, all constants are effective and
could be made explicit.

1. Hessian elliptic curves

Throughout this article, we fix a finite field Fq of characteristic p ≥ 5,
and we denote by K = Fq(t).

1henceforth abbreviated as BSD



Brauer–Siegel theorem for Hessian curves 1063

Let E/K be a nonconstant elliptic curve with a K-rational (nontrivial)
3-torsion point P0. Translating P0 to the origin (0, 0), we can assume that
E has an affine Weierstrass model of the form

EA : y2 + xy −A(t) · y = x3,

for some nonconstant A(t) ∈ Fq(t) (see [13, §7.10]). This model is often
called the Hessian normal form of E. For varying nonconstant A(t) ∈ Fq[t],
the curves EA provide a universal family of nonisotrivial elliptic curves
endowed with a rational 3-torsion point.

In this article, we exclusively concentrate on the case when A(t) is a
monomial A(t) = td, for some integer d ≥ 1 which we always assume to be
coprime with q. For all such integers d, we thus denote by Ed the elliptic
curve over K given by the affine Weierstrass model:

(1.1) Ed : y2 + xy − td · y = x3,

which we call the dth Hessian elliptic curve over K. It can readily be seen
that the model (1.1) has discriminant ∆ = −t3d(27td + 1), and that the
j-invariant of Ed is:

j(Ed/K) = − (24td + 1)3

t3d(27td + 1) ∈ K.

Viewed as a map P1 → P1, the j-invariant j(Ed/K) is plainly not constant,
so that Ed is not isotrivial. Note also that, since p ≥ 5, the j-invariant is
separable i.e., j(Ed/K) /∈ Kp.

The reader is referred to [19, Lect. 1] and [13] for nice expositions of basic
results about elliptic curves over function fields in positive characteristic.

Remark 1.1. These elliptic curves Ed have previously been studied by
Davis and Occhipinti (see [3]) from a different perspective: via a clever use
of character sums they have produced, for many values of d, explicit Fq2(t)-
rational points on Ed which generate a full-rank subgroup of Ed(Fq2(t)).

1.1. Bad reduction and invariants. Let us start by describing the bad
reduction of Ed and by determining the relevant invariants thereof.

By inspection of the places of K dividing the discriminant ∆ of (1.1),
one can see that Ed has good reduction outside {0} ∪Bd ∪ {∞}, where Bd
is the set of places of K that divide 27td + 1 (i.e., Bd is the set of closed
points of P1 corresponding to dth roots of −1/27). More precisely, we have:
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Proposition 1.2. The elliptic curve Ed has good reduction outside S =
{0} ∪Bd ∪ {∞}. The reduction of Ed at places v ∈ S is as follows:

Place v Type of Ed at v δv(Ed/K) νv(Ed/K) cv(Ed/K)

0 I3d 3d 1 3d

v ∈ Bd I1 1 1 1

∞
I0 if d ≡ 0 mod 3 0 0 1

IV if d ≡ −1 mod 3 4 2 3

IV∗ if d ≡ −2 mod 3 8 2 3

In this table, for all places v of K, we have denoted by δv(Ed/K) (resp.
by νv(Ed/K)) the valuation at v of the minimal discriminant ∆min(Ed/K)
of Ed (resp. of the conductor N (Ed/K) of Ed), and by cv(Ed/K) the local
Tamagawa number (see [14, Chap. IV, §9] for definitions).

Proof. This follows from a routine application of Tate’s algorithm to Ed
(see [14, Chap. IV, §9]). �

With this Proposition, we can compute the minimal discriminant divisor
∆min(Ed/K) and the conductor N (Ed/K) of Ed. In particular, they have
degree

deg ∆min(Ed/K) =


4d if d ≡ 0 mod 3,
4(d+ 1) if d ≡ −1 mod 3,
4(d+ 2) if d ≡ −2 mod 3,

and degN (Ed/K) =
{
d+ 1 if d ≡ 0 mod 3,
d+ 3 otherwise.

(1.2)

Indeed, note that ∑v∈Bd
deg v = d. By definition, the exponential differen-

tial height of Ed/K is then

(1.3) H(Ed/K) := q
1

12 deg ∆min(Ed/K) = qb(d+2)/3c,

where b · c denotes the floor function.

Remark 1.3. The following alternative definition of H(Ed/K) justifies its
name (see [19, III.§2]). Let π : Ed → P1 be the Néron model of Ed/K and
s0 : P1 → Ed be the unit section. Denoting by Ω1

Ed/P1 the sheaf of relative
diffentials, we let ω = ωEd/K be the line bundle s∗0Ω1

Ed/P1 on P1. Then the
minimal discriminant divisor ∆min(Ed/K) corresponds to a section of ω⊗12.
In particular, one has 12 degω = deg ∆min(Ed/K), and H(Ed/K) = qdegω.
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Remark 1.4. It will be convenient to have locally minimal integral “short”
Weierstrass models of Ed at our disposal (see Section 3.2). By a straight-
forward change of variables in (1.1), one shows that Ed can be given by:

Ed : y2 = x3 + x2 − 8td · x+ 16t2d.
The discriminant of this integral Weierstrass model is

∆′ = −212t3d(27td + 1).
For all places v 6= ∞ of K, ordv ∆′ = ordv ∆min(Ed/K) so that this new
model is minimal at all the finite places v of K. At v =∞, the application
of Tate’s algorithm when 3 | d (i.e., in the case of good reduction) proves
that a minimal integral model of E at ∞ is y2 + ud/3xy − y = x3, where
u = 1/t is the uniformizer at∞. This model is readily brought into “short”
Weierstrass form:

Ed : y2 = x3 + u2d/3

4 x2 − ud/3

2 x+ 1
4 .

1.2. Torsion and Tamagawa number. In this section, we compute the
torsion subgroup Ed(K)tors, as well as the Tamagawa number τ(Ed/K).

Proposition 1.5. For any integer d ≥ 1 coprime with q, one has
Ed(K)tors ' Z/3Z.

More precisely, Ed(K)tors is generated by P0 = (0, 0).

Proof. Let T := Ed(K)tors and P0 = (0, 0) ∈ Ed(K): it is easy to check that
2P0 = (0, td) = −P0. In particular, the point P0 is 3-torsion, and T already
contains a subgroup isomorphic to Z/3Z.

We observe first that the p-part T [p∞] of T must be trivial for j(Ed/K)
is not a p-th power in K (see [19, Lect. 1, Prop. 7.3]).

For any place v of K, let Gv be the component group of the fiber at v
of the Néron model of Ed (see [13, §7], [14, Chapt. IV, §9]). The table on
p. 365 of [14] gives that

(1.4) Gv '
{
Z/nZ if the fiber at v has type In (n ≥ 1),
Z/3Z if the fiber at v has type IV or IV∗.

We now distinguish two cases. Assume first that 3 - d: by Proposition 1.2,
Ed has additive reduction at the place ∞, with a fiber of type IV or IV∗.
Lemma 7.8 in [13] asserts that the prime-to-p part of T injects into the
component group Gv at an additive place v. Here, this yields that the
whole of T injects into G∞ ' Z/3Z, and we conclude that T ' Z/3Z in
this case.

We now turn to the case when 3 | d. By Corollary 7.5 in [13], the torsion
subgroup T injects into the product ∏v|∆Gv of the component groups.
Therefore, it follows from Proposition 1.2 and (1.4) that T is a subgroup
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of ∏v|∆Gv ' Z/3dZ. From which we deduce that T is cyclic of some
order M ∈ Z≥1, with 3 |M | 3d.

We denote by X1(M) the compactification of the modular curve classi-
fying pairs (E,P ) where E is an elliptic curve and P is a rational point of
order M . Choosing a generator Q ∈ T , we form a pair (Ed, Q) which, by
construction, corresponds to a K-rational (non-cuspidal) point on X1(M).
Hence, there exists a morphism j′ : P1 → X1(M). As we have seen, the
j-invariant j(Ed/K) : P1 → P1 is non constant and separable, and so is
the induced morphism j′. Applying the Riemann–Hurwitz formula to j′

yields that the genus of X1(M) has to be 0. By [19, Lect. 1, §7], this can
only happen for M ∈ {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12}. Given that M must be
divisible by 3, there remains only four possible values: M ∈ {3, 6, 9, 12}. To
conclude the proof in this case, it suffices to check that M must be odd,
and that M cannot be 9.

If there were a point P = (x, y) ∈ Ed(K) of exact order 2, then the x-
coordinate of P would satisfy 4x3− 2x2− 2td · x+ t2d = 0. Letting u = 1/t
and x1 = u2d/3x (recall that 3 | d), we would obtain that

4x3
1 − 2u2d/3 · x2

1 − 2ud/3 · x1 + 1 = 0.

But the latter equation has no solution x1 ∈ Fq(u) since it factors as
(4x2

1 − 2u2d/3 · x1 − 2ud/3) · x1 = −1. This contradiction shows that Ed(K)
has no nontrivial 2-torsion, so that M = |T | is odd.

Next we show that Ed has no nontrivial 9-torsion K-rational point. To
that end, recall that for all points P = (xP , yP ) ∈ Ed(K) such that 3P 6= O,
the “triplication formula” expresses the x-coordinate x3P of 3P as a ratio-
nal function φ3(x)/ψ3(x)2 of xP , where φ3, ψ3 ∈ K[x] are relatively prime
polynomials that can be explicitly computed in terms of the coefficients
of the Weierstrass model (1.1), see [15, Chap. III, Ex. 3.7]. A tedious but
straightforward computation with the formulae of loc. cit. shows that φ3(x)
is given by

φ3(x) = x9 + 6td · x7 + td(1− 24td) · x6 − 6t2d · x5 + 3t3d · x4

+ t3d(3td − 1) · x3 + 3t4d · x2 − 3t5d · x+ t6d.

Now suppose that there exists a K-rational point Q = (xQ, yQ) of exact
order 9 on Ed. Up to replacing Q by one of its multiples, we can assume
that 3Q = P0; in particular, their x-coordinates agree i.e., x3Q = xP0 = 0.
Hence φ3(x) vanishes at xQ ∈ K, and xQ must satisfy

x9
Q + 6td · x7

Q + td(1− 24td) · x6
Q − 6t2d · x5

Q + 3t3d · x4
Q

+ t3d(3td − 1) · x3
Q + 3t4d · x2

Q − 3t5d · xQ + t6d = 0.
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Letting u = 1/t, v = ud/3 and x2 = u2d/3xQ = v2xQ, multiplying the above
relation by u6 = v18 yields that x2 ∈ Fq(u) is a solution of

x9
2 + 6v · x7

2 + (v3 − 24) · x6
2 − 6v2 · x2 + 3v · x4

2

+ (3− v2) · x3
2 + 3v2 · x2

2 − 3v · x2 + 1 = 0.

Since the left-hand side factors, x2 satisfies

either 0 = x3
2 + (v − 3) · x2

2 − v · x2 + 1,
or 0 = x6

2 + (3− v) · x5
2 + (v2 + v + 9) · x4

2 + (v2 − 3v + 2) · x3
2

+ (v2 − v + 3) · x2
2 − 2v2 · x2 + 1.

Neither of these equations has any solution x2 ∈ Fq(u), hence the 9-torsion
in Ed(K) has to be trivial. Therefore, M = 3 and T ' Z/3Z as claimed. �

The (global) Tamagawa number τ(Ed/K) := ∏
v∈S cv(Ed/K) can be

computed from the last column of the table in Proposition 1.2: we imme-
diately get

(1.5) τ(Ed/K) =
{

3d if d ≡ 0 mod 3,
9d otherwise.

In Section 5.1, we will need the results of Proposition 1.5 and (1.5) in
the form of the following bound:

Corollary 1.6. For all integers d ≥ 2, coprime with q, the following bound
holds:

log d
d
�q

log
(
τ(Ed/K) · q · |Ed(K)tors|−2)

logH(Ed/K) �q
log d
d

, (as d→∞),

for some effective constants depending at most on q.

This is a straightforward consequence of our computations of H(Ed/K),
|Ed(K)tors| and τ(Ed/K).

Remark 1.7. The above Corollary could also have been obtained as a
special case of deep results in [10]. In that paper, the authors prove upper
bounds on the order of the torsion subgroup (loc. cit., Thm. 3.8) and on the
Tamagawa number (loc. cit., Thm. 6.5), which are valid for abelian varieties
over K, under mild semistability assumptions.

Note that their proof is much more involved and less explicit, which is
why we chose to include a self-contained treatment here.



1068 Richard Griffon

2. Preliminaries for the computation of the L-function

The goal of the next section is to calculate the L-function of Ed in terms
of Jacobi sums. In this section, we introduce the necessary notation and
review the required facts about characters and Jacobi sums. The notation
introduced in this section will be in force for the rest of the paper.

2.1. Action of q on Z/dZ. For any integer d ≥ 2 coprime to q, the
subgroup 〈q〉 ⊂ (Z/dZ)× generated by q acts 2 on Z/dZ by n 7→ q · n. For
any subset Z ⊂ Z/dZ which is stable under this action, we denote by Oq(Z)
the set of orbits of Z. In what follows, we will be particularly interested in
the set

Zd :=
{
Z/dZ r {0, d/3, 2d/3} if d ≡ 0 mod 3,
Z/dZ r {0} otherwise,

(which is stable under multiplication by q because gcd(d, q) = 1) and in the
corresponding set of orbits Oq(Zd). Given an orbit m ∈ Oq(Zd), we will
often need to make a choice of representative m ∈ Zd of this orbit: we make
the convention that orbits in Oq(Zd) are always denoted by a bold letter
(m, n, . . . ) and that the corresponding normal letter (m, n, . . . ) designates
any choice of representative of this orbit in Zd. We also identify without
comment Z/dZ with its lift {0, 1, 2, . . . , d− 1} in Z.

For any orbit m ∈ Oq(Zd), its length |m| =
∣∣{m, qm, q2m, . . .

}∣∣ equals

|m| = min {n ∈ Z≥1 : qnm ≡ m mod d} ,

which can equivalently be described as the multiplicative order of q modulo
d/ gcd(d,m), for any m ∈ m. By construction of the multiplicative order,
we note that, for a power qn of q, one has qnm ≡ m mod d if and only if
|m| divides n i.e., if and only if Fqn is an extension of Fq|m| .

Remark 2.1. In the special case when d divides q − 1, the action of q on
Zd is trivial and there is a bijection between Oq(Zd) and Zd.

2.2. Characters of order dividing d. Fix an algebraic closure Q of Q
and a prime ideal P above p in the ring of integers Z of Q: the residue field
Z/P is an algebraic closure Fp of Fp. The given finite field Fq and, more
generally, any finite extension thereof will be viewed as subfields of Fp.
The reduction map Z → Z/P induces an isomorphism between the group
µ∞,p′ ⊂ Z× of roots of unity of order prime to p and the multiplicative
group Fp

×. We let t : Fp
× → µ∞,p′ be the inverse of this isomorphism,

viewed as a Q×-valued map, and we denote by the same letter the restriction
of t to any finite extension of Fq.

2For brevity, we will simply say that “q acts on Z/dZ by multiplication”.
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Any nontrivial multiplicative character on a finite extension of Fq is
then a power of (a restriction of) t, cf. [1, §3.6.2]. The trivial multiplicative
character will be denoted by 1.

Definition 2.2. For any m ∈ Z/dZ r {0} and any integer s ≥ 1, define a
character t(s)

m : F×
qs·|m| → Q× by setting

∀ x ∈ F×
qs·|m| , t(s)

m (x) :=
(
t ◦Nqs·|m|/q|m|(x)

)(q|m|−1)m/d

Here, Nqs·|m|/q|m| : Fqs·|m| → Fq|m| denotes the norm of the extension
Fqs·|m|/Fq|m|. When s = 1, we denote t(1)

m by tm for short.

Note that t(s)
m is indeed a multiplicative character on F×

qs·|m| , because t is
one and the norm Nqs·|m|/q|m| is multiplicative. We extend t(s)

m to the whole
of F×

qs·|m| by putting t(s)
m (0) := 0.

By construction, tm is a nontrivial character on F×
q|m|

and its order di-
vides d: more precisely, by noting that the restriction of t to F×

q|m|
has exact

order q|m|− 1, it can be shown that the order of tm is exactly d/ gcd(d,m).
The “lifted character” t(s)

m is defined on F×
qs·|m| and has the same order as tm

because the norm Nqs·|m|/q|m| is surjective.
Moreover, the following result shows that we can thus enumerate all

characters of order dividing d on finite extensions of Fq:

Lemma 2.3. Let d ≥ 2 be coprime to q and Fqn be the extension of degree n
of Fq. Denote by X(d, qn) the set of nontrivial characters χ on F×qn such
that χd = 1. Then

X(d, qn) =
{
t(s)
m , m ∈ Z/dZ r {0} and s ≥ 1 such that s · |m| = n

}
.

Proof. The characters t(s)
m appearing on the right-hand side all belong to

X(d, qn) for they are all nontrivial characters on F×qn with order dividing d.
To prove the converse inclusion, let dn = gcd(d, qn−1) and χ0 = t(qn−1)/dn .
By the discussion above, χ0 is a character on F×qn of exact order dn. Thus,
by cyclicity of the character group of F×qn , χ0 generates the subgroup of
characters of order dividing d, which is none other than X(d, qn) ∪ {1}.
Hence, for any χ ∈ X(d, qn), there is a unique k ∈ Z such that 1 ≤ k < dn
and χ = χk0 = t(qn−1)·k/dn . Let m = kd/dn ∈ Z and note that 1 ≤ m < d.
By construction, d divides m(qn − 1) and we have χ = t(qn−1)m/d. Recall
that |m| is the multiplicative order of q modulo d/ gcd(d,m): by definition,
this implies that |m| divides n (see Section 2.1), so that we can write
n = s · |m| for some s ≥ 1.
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This shows that χ = t(qs·|m|−1)m/d = t(q|m|−1)m/d ◦NFqn/F
q|m|

= t(s)
m . �

We will actually need the following, slightly more precise, result:

Lemma 2.4. Let d ≥ 2 be coprime to q and Fqn be the extension of degree n
of Fq. Denote by X3(d, qn) the set of χ ∈ X(d, qn) such that χ3 6= 1. Then

X3(d, qn) =
{
t(s)
m , m ∈ Zd and s ≥ 1 such that s · |m| = n

}
,

where Zd is as defined in Section 2.1.

Proof. We distinguish two cases. First, if 3 - d, there are no nontrivial char-
acter of order dividing d whose third power is trivial (since 3 and d are co-
prime), so that X3(d, qn) = X(d, qn). On the other hand, Zd = Z/dZ r {0},
and the preceding Lemma allows us to conclude in this case. In the re-
maining case when 3 divides d, we have Zd = Z/dZ r {0, d/3, 2d/3} and
X3(d, qn) = X(d, qn) r {χ : χ3 = 1}. Since the order of t(s)

m for m ∈
Z/dZr{0} is exactly d/ gcd(d,m), a direct inspection shows that (t(s)

m )3 = 1

if and only if m = d/3 or 2d/3. This proves the claim. �

Remark 2.5. In the special case when d divides q − 1, the characters tm
(m ∈ Zd) are all characters of F×q because |m| = 1. Since there are a priori
|Zd| nontrivial characters χ on F×q such that χd = 1 and χ3 6= 1, we have
enumerated all possible such characters.

2.3. Jacobi sums. Let Fr be a finite field of odd characteristic (in our
applications, Fr will be a finite extension of Fq). We extend the (multi-
plicative) characters χ : F×r → Q× to the whole of Fr by setting χ(0) = 0
if χ is not the trivial character 1, and by 1(0) = 1. For a character
χ : F×r → Q× and an extension Fr′/Fr of degree s ≥ 1, whose norm is
denoted by Nr′/r : Fr′ → Fr, we let χ(s) := χ ◦Nr′/r be the “lifted” char-
acter.

To any triple of characters χ1, χ2, χ3 on F×r , we associate a Jacobi sum

jr(χ1, χ2, χ3) :=
∑

x1,x2,x3∈Fr
x1+x2+x3=1

χ1(x1)χ2(x2)χ3(x3).

Let us recall some classical facts about these sums (see [1, §2.5.3–§2.5.4]
for details and proofs). If χ1, χ2, χ3 and χ1χ2χ3 are all nontrivial, one has
|jr(χ1, χ2, χ3)| = r. If χ1, χ2, χ3 are nontrivial but χ1χ2χ3 is trivial, the
Jacobi sum “degenerates” to:

(2.1) jr(χ1, χ2, χ3) = −χ3(−1) ·
∑

x1,x2∈Fr
x1+x2=1

χ1(x1)χ2(x2).
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Besides, Jacobi sums satisfy the Hasse–Davenport relation (see [1, §3.7]):
for any finite extension Fr′/Fr of degree s, and any characters χ1, χ2, χ3 on
F×r , one has

(2.2) jr′(χ(s)
1 , χ

(s)
2 , χ

(s)
3 ) = jr(χ1, χ2, χ3)s.

We finally introduce the following notation:

Definition 2.6. For any m ∈ Zd, we let
(2.3) J(m) := jq|m|(tm, tm, tm).

Notice that J(m) = J(q ·m) since x 7→ xq is a bijection of Fq|m|. For an orbit
m ∈ Oq(Zd), we can thus define J(m) := J(m) for any choice of m ∈m.

By construction of Zd, neither tm nor (tm)3 is trivial, so that |J(m)|=q|m|

for all m ∈ Oq(Zd).

3. The L-function

For any place v of K, let qv be the cardinality of the residue field Fv of
K at v, and denote by (Ẽd)v the reduction modulo v of a minimal integral
model of Ed at v (a plane cubic curve over Fv). By definition, the L-function
of Ed is the power series given by

(3.1) L(Ed/K, T ) =
∏

v good

(
1− av · T deg v + qv · T 2 deg v)−1

·
∏
v bad

(
1− av · T deg v)−1 ∈ Q[[T ]],

where the products are over the places of K of good, resp. bad, reduction
for Ed, and where av := qv+1−|(Ẽd)v(Fv)|. Remark that, when Ed has bad
reduction at v, av is 0,+1 or −1 depending on whether the reduction of E
at v is additive, split multiplicative or nonsplit multiplicative respectively.
See [19, Lect. 1, §9] for more details.

With the notation introduced in the previous section, we can now state
our main result:

Theorem 3.1. Let d ≥ 2 be an integer coprime with q, and set

Zd :=
{
Z/dZ r {0, d/3, 2d/3} if d ≡ 0 mod 3,
Z/dZ r {0} otherwise.

The L-function of Ed/K is given by

(3.2) L(Ed/K, T ) =
∏

m∈Oq(Zd)

(
1− tm(−1)J(m) · T |m|

)
∈ Z[T ],

where J(m) is the Jacobi sum defined in (2.3).
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The rest of the section is devoted to the proof of this Theorem. Our
strategy is inspired by that of [2, Thm. 3.2.1]: we calculate L(Ed/K, T )
by manipulations of character sums. Let us note that an alternative, more
cohomological, computation could be conducted (along the lines of [17,
§7], which treats a different family of elliptic curves). The latter approach
would be less elementary, but would have the advantage of “explaining”
the appearance of Jacobi sums in L(Ed/K, T ). Indeed, one would then rely
on the fact that the minimal regular model Ed → P1 of Ed/K is dominated
by a quotient of the Fermat surface Fd/Fq of degree d (see [18] and [19,
Lect. 3, §10]), whose zeta function is well-known to involve Jacobi sums
(see [7]).

Remark 3.2. In the special case when d divides q − 1, the expression
in (3.2) above simplifies. Indeed, letting χ be a character on F×q of exact
order d, one has

(3.3) L(Ed/K, T ) =
∏

1≤k≤d
3k 6≡0 mod d

(
1− χ(−1)kjq(χk, χk, χk) · T

)
.

This was stated as Theorem A in the introduction; it follows from Theo-
rem 3.1 with Remarks 2.1 and 2.5.

3.1. Character sums identities. The proof of Theorem 3.1 requires two
identities about character sums, which we first establish.

For any finite field Fr of odd characteristic, we denote by λ : F×r → {±1}
the unique nontrivial character of order 2 on F×r (the “Legendre symbol”
of Fr), extended by λ(0) = 0.

Proposition 3.3. Let Fr be a finite field of odd characteristic. For any
character χ : F×r → Q×,∑
z∈Fr

∑
x∈Fr

χ(z) ·λ(x3 +x2−8zx+16z2) =
{

0 if χ is trivial,
χ(−1) · jr(χ, χ, χ) otherwise.

Proof. Let Sr(χ) denote the double sum on the left-hand side of the identity
in the Proposition. We first put u = 4z in the outer sum, exchange the
order of summation and split the sum according to whether x = 0 or not:
we obtain that

χ(4) · Sr(χ) =
∑
u∈Fr

χ(u)λ(u)2 +
∑
x 6=0

∑
u∈Fr

χ(u)λ(x3 + x2 − 2ux+ u2)

=
∑
u6=0

χ(u) +
∑
x6=0

∑
u∈Fr

χ(u) · λ(x3 + (x− u)2)

 ,
since λ(u)2 = 1 (resp. 0) for u 6= 0 (resp. for u = 0).
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To treat the sum over x 6= 0, we note the following: for a given x 6= 0,
writing u = x(y + 1) yields that∑

u∈Fr

χ(u) · λ(x3 + (x− u)2) = χ(x) ·
∑
y∈Fr

χ(y + 1) · λ(x+ y2).

Summing this identity over all x 6= 0 and exchanging the order of summa-
tion leads to

χ(4) · Sr(χ) =
∑
u6=0

χ(u) +
∑
y∈Fr

χ(y + 1)

∑
x 6=0

χ(x)λ(x+ y2)

 .
If χ is trivial, a straightforward evaluation of the sums leads to the desired
result: namely that Sr(χ) = 0. From now on, we thus assume that χ is
nontrivial. In that case, ∑u6=0 χ(u) = 0 and χ(0) = 0, so that the last
displayed identity reads:

Sr(χ) = χ−1(4) ·
∑
y∈Fr

χ(y + 1)

∑
x∈Fr

χ(x)λ(x+ y2)

 .
Recall that 1 + λ(w) = |{t ∈ Fr : t2 = w}| for all w ∈ Fr. Thus, for any
y ∈ Fr, one can rewrite the sums over x under the form:∑
x∈Fr

χ(x)λ(x+ y2) =
∑
x∈Fr

χ(x)
(
1 + λ(x+ y2)

)
=
∑
x∈Fr

χ(x) ·
∣∣∣{t ∈ Fr : x = t2 − y2}

∣∣∣ =
∑
t∈Fr

χ(t2 − y2).

We derive that
Sr(χ) = χ−1(4) ·

∑
(y,t)∈F2

r

χ(t− y)χ(t+ y)χ(y + 1).

Since the map F2
r → {(x1, x2, x3) ∈ F3

r : x1 + x2 + x3 = 1} given by
(y, t) 7→ ((t− y)/2,−(y + t)/2, y + 1) is a bijection, we can write the latter
double sum as a Jacobi sum:∑

(y,t)∈F2
r

χ(t− y)χ(t+ y)χ(y + 1) = χ(−4) ·
∑

x1+x2+x3=1,
xi∈Fr

χ(x1)χ(x2)χ(x3)

= χ(−4) · jr(χ, χ, χ).
Therefore, we have proved that Sr(χ) = χ(−1) · jr(χ, χ, χ) for a nontrivial
character χ. This concludes the proof. �

Proposition 3.4. Let Fr be a finite field of odd characteristic, and a ∈ F×r .
Then
(3.4)

∑
x∈Fr

λ(x3 + a) = −λ(a) ·
∑
ξ3=1
ξ 6=1

ξ(4a) · jr(ξ, ξ, ξ),
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where the sum on the right-hand side is over characters ξ : F×r → Q× of
exact order 3.

The sum over ξ in (3.4) contains 2 or 0 terms, depending on whether 3
divides |F×r | = r − 1 or not, respectively (because F×r is cyclic).

Proof. For any z ∈ Fr, one has
∣∣{x ∈ Fr : x3 = z}

∣∣ = ∑
ξ3=1 ξ(z) where

the sum is over characters ξ on F×r such that ξ3 = 1 (see [1, Lem. 2.5.21]).
Therefore

(3.5)
∑
x∈Fr

λ(x3 + a) =
∑
z∈Fr

∣∣{x ∈ Fr : x3 = z}
∣∣ · λ(z + a)

=
∑
z∈Fr

λ(z + a) +
∑
ξ3=1
ξ 6=1

∑
z∈Fr

ξ(z)λ(z + a)

 .
The first sum on the right-hand side vanishes because λ is nontrivial. Hence
we are done if 3 does not divide |F×r |, since the sum over ξ is then empty.

In the case where 3 divides |F×r |, let ξ be one of the two characters of
exact order 3 on F×r . Then,∑
z∈Fr

ξ(z)λ(z + a) =
∑

x1,x2∈Fr
x1+x2=1

ξ(−ax1)λ(ax2) = ξ(−a)λ(a) ·
∑

x1,x2∈Fr
x1+x2=1

ξ(x1)λ(x2)

= ξ(−4a)λ(a) ·
∑

y1,y2∈Fr
y1+y2=1

ξ(y1)ξ(y2) = −ξ(4a)λ(a) · jr(ξ, ξ, ξ).

The penultimate equality follows from [1, Prop. 2.5.18], and the last one
from (2.1) because ξ3 = 1.

Plugging this result twice into (3.5) finishes the proof. �

3.2. Proof of Theorem 3.1. From the definition (3.1) of the L-function,
expanding logL(Ed/K, T ) as a power series and rearranging terms as in [2,
§3.2], one arrives at the following expression for L(Ed/K, T ):

Lemma 3.5. For any τ ∈ P1(Fq), denote by vτ the place of K correspond-
ing to τ , and by (Ẽd)τ the reduction of an integral minimal model of Ed
modulo vτ . For all n ≥ 1 and any τ ∈ P1(Fqn), we let

Ad(τ, qn) := qn + 1− |(Ẽd)τ (Fqn)|.

Then, the L-function of Ed/K satisfies the formal identity

(3.6) logL(Ed/K, T ) =
∞∑
n=1

 ∑
τ∈P1(Fqn )

Ad(τ, qn)

 · Tn
n
.
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Our first step will be to find a more explicit expression for the inner sums
in (3.6). For any finite extension Fqn of Fq, we again denote by λ : F×qn →
{±1} the quadratic character on F×qn . For any τ ∈ P1(Fqn), we fix an affine
model y2 = fτ (x) of (Ẽd)τ with fτ (x) ∈ Fqn [x] of degree 3. A standard
computation yields that

(3.7) Ad(τ, qn) = qn + 1− |(̃Ed)τ (Fqn)|
= qn −

∑
x∈Fqn

(1 + λ (fτ (x))) = −
∑
x∈Fqn

λ (fτ (x)) .

The value of Ad(∞, qn) depends on the reduction of Ed at τ =∞ which,
by Proposition 1.2, is as follows. When d is not divisible by 3, Ed has
additive reduction at ∞ and (Ẽd)∞ is a rational curve over Fq, whence
Ad(∞, qn) = 0 in that case. When 3 divides d, Ed has good reduction at∞
and the reduced curve (̃Ed)∞ has affine model y2 = x3 + 1/4 over Fq (see
Remark 1.4). Therefore, by (3.7) and Proposition 3.4 (with r = qn and
a = 1/4), one has

Ad(∞, qn) = −
∑
x∈Fqn

λ(x3 + 1/4)

=
∑
ξ3=1
ξ 6=1

jqn(ξ, ξ, ξ) =
∑
ξ3=1
ξ 6=1

ξ(−1) · jqn(ξ, ξ, ξ),

where the sum is over nontrivial characters ξ of F×qn such that ξ3 = 1 (note
that ξ(−1) = 1 for such a ξ).

Next for any τ ∈ Fqn , as was noted in Remark 1.4, one can take fτ (x)
to be fτ (x) = x3 + x2 − 8τd · x+ 16τ2d, and (3.7) here leads to

Ad(τ, qn) = −
∑
x∈Fqn

λ
(
x3 + x2 − 8τd · x+ 16τ2d

)
.

For any z ∈ Fqn , one has
∣∣∣{τ ∈ Fqn : τd = z

}∣∣∣ = ∑
χd=1 χ(z), where the

sum is over all characters χ of F×qn such that χd = 1 (see [1, Lem. 2.5.21]).
After exchanging order of summation, we obtain that∑
τ∈Fqn

A(τ, qn) = −
∑
τ∈Fqn

∑
x∈Fqn

λ
(
x3 + x2 − 8τd · x+ 16τ2d

)
= −

∑
z∈Fqn

∣∣{τ ∈ Fqn : τd = z}
∣∣ ·∑
x∈Fqn

λ
(
x3 + x2 − 8zx+ 16z2

)

= −
∑
χd=1

 ∑
z∈Fqn

∑
x∈Fqn

χ(z)λ
(
x3 + x2 − 8zx+ 16z2

) .
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Using Proposition 3.3 on the inner sums (with r = qn), we find that∑
τ∈P1(Fqn )

A(τ, qn) = A(∞, qn)−
∑

χ∈X(d,qn)
χ(−1) · jqn(χ, χ, χ),

where, for all e ≥ 1, we write X(e, qn) for the set of nontrivial characters χ
on F×qn such that χe = 1. By our expression of A(∞, qn), it follows that∑

τ∈P1(Fqn )
Ad(τ, qn)

=


∑

χ∈X(3,qn)
ξ(−1)jqn(ξ, ξ, ξ) −

∑
χ∈X(d,qn)

χ(−1)jqn(χ, χ, χ) if 3 | d,

0 −
∑

χ∈X(d,qn)
χ(−1)jqn(χ, χ, χ) else.

In both cases, one can rewrite this as∑
τ∈P1(Fqn )

Ad(τ, qn) = −
∑

χ∈X3(d,qn)
χ(−1) · jqn(χ, χ, χ),

where the sum is over the set X3(d, qn) of nontrivial characters χ on F×qn

such that χd = 1 and χ3 6= 1 (see Section 2.2). Plugging this last identity
into (3.6), we obtain that

(3.8) − logL(Ed/K, T ) =
∑
n≥1

 ∑
χ∈X3(d,qn)

χ(−1) · jqn(χ, χ, χ)

 · Tn
n
.

We now perform a “reindexation” of this double sum: Lemma 2.4 allows
us to rewrite (3.8) under the form:

− logL(Ed/K, T ) =
∑
m∈Zd

∑
s≥1

t(s)
m (−1) · jqs·|m|(t(s)

m , t(s)
m , t(s)

m ) · T
s·|m|

s · |m|

 .
Further, t(s)

m (−1) = tm(−1)s and the Hasse–Davenport relation (2.2) im-
plies that
∀ m ∈ Zd, ∀ s ≥ 1, jqs·|m|(t(s)

m , t(s)
m , t(s)

m ) = jq|m|(tm, tm, tm)s = J(m)s.
Therefore, we derive that

− logL(Ed/K, T ) =
∑
m∈Zd

∑
s≥1

(
tm(−1)J(m) · T |m|

)s
s · |m|

= −
∑
m∈Zd

1
|m| · log

(
1− tm(−1)J(m) · T |m|

)
.

In the right-most sum, notice that each term “log(1− tm(−1)J(m) ·T |m|)”
appears |m| times since J(qk ·m) = J(m) for all k ≥ 1. Thanks to the
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“weighting” by 1/|m|, we may thus write the sum over m ∈ Zd as a sum
over m ∈ Oq(Zd). Finally, we have proved

logL(Ed/K, T ) =
∑

m∈Oq(Zd)
log

(
1− tm(−1)J(m) · T |m|

)
.

Exponentiating this last identity completes the proof of Theorem 3.1. �

4. Bounds on the special value

We now study in more detail the behaviour of L(Ed/K, T ) around the
point T = q−1. More specifically, recall that the analytic rank of Ed is
defined to be ρ(Ed/K) := ordT=q−1 L(Ed/K, T ), and that the special value
of L(Ed/K, T ) at T = q−1 is the quantity

(4.1) L∗(Ed/K, 1) := L(Ed/K, T )
(1− qT )ρ

∣∣∣∣
T=q−1

where ρ = ρ(Ed/K).

By construction and by the Riemann Hypothesis L∗(Ed/K, 1) ∈ Z[q−1]>0.

Remark 4.1. The special value is “usually” defined as the first nonzero
coefficient in the Taylor expansion of s 7→ L(Ed/K, q−s) around s = 1:
our definition (4.1) differs from this more “usual” one by a factor (log q)ρ,
which we prefer to avoid in order to ensure that L∗(Ed/K, 1) ∈ Q∗. Note
that this is consistent with our normalisation of Reg(Ed/K) (see Section 5
below).

The goal of this section is to give an asymptotic estimate on the size
of L∗(Ed/K, 1) in terms of the height H(Ed/K), as d grows to +∞. By a
rather crude estimate, as in [10, §7] for example, one readily obtains that

−5 + o(1) ≤ logL∗(Ed/K, 1)
logH(Ed/K) ≤ o(1) (as d→∞).

Here, we prove the following improved bounds:

Theorem 4.2. For all ε ∈ (0, 1/4), there exist positive constants C1, C2,
depending at most on p, q and ε, such that for any integer d ≥ 2 coprime
to q, the special value L∗(Ed/K, 1) satisfies:

(4.2) − C1 ·
( log log d

log d

)1/4−ε
≤ logL∗(Ed/K, 1)

logH(Ed/K) ≤ C2 ·
log log d

log d .

In the next section, we will use the BSD conjecture to reveal the arith-
metic significance of such an estimate. The rest of this section is dedicated to
the proof of Theorem 4.2. Using Theorem 3.1, we notice that L(Ed/K, T ) is
a polynomial of the type studied in [7]. The desired bounds on L∗(Ed/K, 1)
are then a direct consequence of the results of loc. cit., which we start by
recalling.
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4.1. Framework for bounding some special values. For the conve-
nience of the reader, we briefly recall the setting introduced in [7, §3] to
prove bounds on special values of polynomials of the type appearing in (3.2).
For any integer d ≥ 2 coprime to q, consider

Gd :=
{
a = (a0, a1, a2, a3) ∈ (Z/dZ)4 : a0 + a1 + a2 + a3 = 0

}
.

The group (Z/dZ)× acts on Gd by coordinate-wise multiplication. In par-
ticular, the subgroup 〈q〉 ⊂ (Z/dZ)× acts on Gd and, for any nonempty
subset Λ ⊂ Gd which is stable under the action of 〈q〉, we denote by Oq(Λ)
the set of orbits. For a ∈ Gd, we denote its orbit by A = {a, qa, q2a, . . .}.

We say that a nonempty subset Λ ⊂ Gd satisfies hypothesis (H) if, for
all ε ∈ (0, 1/4), there exists u ∈ (0, 1) such that

(H)
∣∣∣∣{a ∈ Λ : d > max

0≤i≤3
{gcd(d, ai)} > du

}∣∣∣∣ ≤ c′ · |Λ| · ( log log d
log d

)1/4−ε
,

for some constant c′.
For a = (a0, . . . , a3) ∈ Gd with a 6= 0 = (0, 0, 0, 0), whose orbit A has

length |A|, we define four characters on F×
q|A|

:

∀ i ∈ {0, 1, 2, 3}, χi : F×
q|A|
→ Q×, x 7→ t(x)(q|A|−1)·ai/d.

One then defines a Jacobi sum J′(a0, a1, a2, a3) ∈ Q(ζd) by:

J′(a0, a1, a2, a3) := 1
q|A| − 1

∑
x0,...,x3∈F×

q|A|
x0+···+x3=0

3∏
i=0
χi(xi).

Since a ∈ Gd, the product χ0χ1χ2χ3 is the trivial character on F×
q|A|

, and
a classical calculation (cf. [1, Lem. 2.5.13]) relates J′(a0, a1, a2, a3) to the
Jacobi sums in Definition 2.6:

(4.3) J′(a0, a1, a2, a3) = (χ0χ1χ2)(−1) · jq|A|(χ0,χ1,χ2).

For any a = (a0, a1, a2, a3) ∈ Gd r {0}, it is well-known that J′(a) = 0 as
soon as some (but not all) of the ai’s are 0 mod d, and that |J′(a)| = q|A|

if all ai’s are nonzero (see [1, §2.5]).
To any nonempty subset Λ ⊂ Gd which is stable under the action of

(Z/dZ)×, we can associate a polynomial

P (Λ, T ) :=
∏

A∈Oq(Λ)

(
1− J′(a) · T |A|

)
,

where, for any orbit A, a ∈ Gd denotes a choice of representative of A.
Since the action of Gal(Q(ζd)/Q) on {J′(a)}a∈Gd

corresponds to the action
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of (Z/dZ)× on Gd in the isomorphism Gal(Q(ζd)/Q) ' (Z/dZ)×, the as-
sumption that Λ is (Z/dZ)×-stable ensures that P (Λ, T ) ∈ Z[T ]. For Λ as
above, we finally introduce a special value P ∗(Λ) ∈ Z[q−1] r {0}:

(4.4) P ∗(Λ) := P (Λ, T )
(1− qT )ρ

∣∣∣∣
T=q−1

where ρ = ordT=q−1 P (Λ, T ).

The following statement summarizes the main technical results of [7]:

Theorem 4.3. For all ε ∈ (0, 1/4), there exist positive constants C3, C4,
depending at most on q, p and ε, such that the following holds. For any
integer d ≥ 2 coprime to q, and any nonempty subset Λ ⊂ Gd which is
stable under the action of (Z/dZ)× and for which hypothesis (H) holds, the
special value P ∗(Λ) satisfies

(4.5) − C3 ·
( log log d

log d

)1/4−ε
≤ log |P ∗(Λ)|

log q|Λ|
≤ C4 ·

log log |Λ|
log |Λ| .

This theorem is a concatenation of Theorems 5.1 and 6.2 in loc.cit.: the
proof of the upper bound is relatively straighforward but that of the lower
bound is more delicate. It essentially involves two ingredients: the Stick-
elberger theorem about p-adic valuations of Jacobi sums and an average
equidistribution theorem for subgroups of (Z/dZ)× (see [7, §4 and §6] for
more details).

4.2. Proof of Theorem 4.2. In order to apply Theorem 4.3 to the special
value L∗(Ed/K, 1), we start by relating L(Ed/K, T ) to a certain P (Λ, T )
as in the last subsection. Namely, for any integer d ≥ 2 coprime to q, we
consider the subgroup Hd ⊂ Gd generated by u = (1, 1, 1,−3) and we let

(4.6) Λd := Hd r {0} = {(m,m,m,−3m), m ∈ Z/dZ}r {0}.

Being a subgroup of Gd, Hd is nonempty and stable under multiplication
by (Z/dZ)×, and so is Λd. We clearly have |Λd| = |Z/dZ| − 1 = d − 1.
Let a = (a0, . . . , a3) be an element of Λd, so that a = m · u for some
m ∈ Z/dZ r {0}. Notice first that |A| = |m| because the coordinates of u
are pairwise coprime. Also, all the ai’s are nonzero if and only if m ∈ Zd.
Furthermore, it follows from (4.3) that

J′(a) = J′(m,m,m,−3m) = tm(−1)3 · jq|m|(tm, tm, tm) = tm(−1) · J(m).

Consequently, in the notation of Section 4.1, Theorem 3.1 translates as:

Corollary 4.4. Let d ≥ 2 be an integer coprime to q, define Λd as in (4.6).
Then the L-function of Ed is given by

L(Ed/K, T ) = P (Λd, T ) ∈ Z[T ].
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In particular, since the definitions (4.1) and (4.4) of special values agree,
we see that

L∗(Ed/K, 1) = P ∗(Λd).
Let us now check that the subset Λd ⊂ Gd defined in (4.6) satisfies (a

strong form of) hypothesis (H):

Lemma 4.5. For all u ∈ (0, 1), one has∣∣{a ∈ Λd : d > max
i
{gcd(d, ai)} > du

}∣∣�u d
−u/2 · |Λd|.

Proof. By construction of Hd, any a = (a0, . . . , a3) ∈ Λd is of the form
a = (m,m,m,−3m) for some m ∈ Z/dZ r {0}. Thus, maxi{gcd(d, ai)} is
at most 3 gcd(d,m). In particular, we obtain that∣∣{a ∈ Λd : d > max

i
{gcd(d, ai)} > du

}∣∣
≤ |{m ∈ Z/dZ r {0} : gcd(d,m) > du/3}| .

For any divisor e of d, the number of m ∈ Z/dZ such that gcd(d,m) = e is
φ(d/e) ≤ d/e. Hence,

|{m ∈ Z/dZ : gcd(d,m) > du/3}| =
∑
e|d

du/3<e

|{m ∈ Z/dZ : gcd(d,m) = e}|

≤
∑
e|d

du/3<e

d

e
≤ 3τ(d) · d

du
,

where τ(d) is the number of divisors of d. By a classical theorem, for all
v > 0, there is an explicit constant cv such that τ(d) ≤ cv · dv (see [8,
Thm. 315] and its proof). In particular, for v = u/2 > 0, we have:∣∣{a ∈ Λd : d > max

i
{gcd(d, ai)} > du

}∣∣ ≤ 3τ(d)d−u · d�u d
−u/2 · |Λd|.

This proves the Lemma, and shows that Λd satisfies hypothesis (H). �

Together with Corollary 4.4, the previous Lemma implies that Theo-
rem 4.3 applies to P ∗(Λd) = L∗(Ed/K, 1). Remembering that |Λd| = d− 1,
we thus obtain that

−C3 ·
( log log d

log d

)1/4−ε
≤ logL∗(Ed/K, 1)

log qd−1 ≤ C4 ·
log log d

log d , (as d→∞).

By (1.3), we have

∀ d ≥ 2, 9
4 ≤

3(d+ 1)
d+ 2 ≤ log qd−1

logH(Ed/K) = d− 1
b(d+ 2)/3c ≤

3(d+ 1)
d− 1 ≤ 9.

Combining the last two displayed sets of inequalities concludes the proof of
Theorem 4.2.
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5. Analogue of the Brauer–Siegel theorem

In this section, we reinterpret the bounds in Theorem 4.2 in terms of
arithmetic invariants of Ed/K, which we first introduce.

By the analogue of the Mordell–Weil theorem for elliptic curves over K,
the group Ed(K) is finitely generated (cf. [19, Lect. 1, Thm. 5.1]). Further-
more, the group Ed(K) is endowed with the canonical Néron–Tate height
ĥNT : Ed(K) → Q. The quadratic map ĥNT induces a Z-bilinear pairing
〈 · , · 〉NT : Ed(K)×Ed(K)→ Q, which is nondegenerate modulo Ed(K)tors
(cf. [14, Chap. III, Thm. 4.3]). The Néron–Tate regulator of Ed/K is then
defined as:

Reg(Ed/K) :=
∣∣∣det (〈Pi, Pj〉NT )1≤i,j≤r

∣∣∣ ∈ Q∗,

for any choice of a Z-basis P1, . . . , Pr ∈ Ed(K) of Ed(K)/Ed(K)tors. Note
that we normalize 〈 · , · 〉NT to have values in Q: we may do so since, in our
context, this height pairing has an interpretation as an intersection pairing
on the minimal regular model of Ed (see [14, Chap. III, §9]).

Let us also recall that the Tate–Shafarevich group of Ed/K is defined by

X(Ed/K) := ker
(

H1(K,Ed) −→
∏
v

H1(Kv, (Ed)v)
)
,

see [19, Lect. 1, §11] for more details.
In Theorem 5.1 below, we will see that X(Ed/K) is finite.

5.1. The BSD conjecture. Inspired by the BSD conjecture for elliptic
curves over Q, Tate conjectured in [16] that ρ(Ed/K) and L∗(Ed/K, 1) have
an arithmetic interpretation. The conjecture is still open in general, but has
been proved in the case of Ed by Ulmer. We state his result as follows:

Theorem 5.1 (Ulmer). For all integers d ≥ 1, coprime with q, let Ed be
the Hessian elliptic curve (1.1) as above. Then the full BSD conjecture is
true for Ed/K. That is to say,

• the Tate–Shafarevich group X(Ed/K) is finite,
• the rank of Ed(K) is equal to ordT=q−1 L(Ed/K, T ),
• moreover, one has

(5.1) L∗(Ed/K, 1) = |X(Ed/K)| · Reg(Ed/K)
H(Ed/K) · τ(Ed/K) · q

|Ed(K)tors|2
,

where τ(Ed/K) denotes the global Tamagawa number of Ed (as
in Section 1.2) and H(Ed/K) its exponential differential height (as
in Section 1.1).

We refer the reader to [18, §6] for the proof, or to [19, Lect. 3, §10] for a
detailed sketch.
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Remark 5.2. Given Corollary 4.4, Lemma 3.5 in [7] yields fairly explicit
expressions for ρ(Ed/K) and L∗(Ed/K, 1) as follows. For any integer d ≥ 2,
in the notation of Section 2, consider the two subsets of Zd given by

Vd :=
{
m ∈ Zd : tm(−1)J(m) = q|m|

}
and Sd := Zd r Vd.

It is easy to check that the sets Vd and Sd are stable under multiplication
by q. Then, the analytic rank is given by ρ(Ed/K) = |Oq(Vd)|, and the
special value L∗(Ed/K, 1) has the following expression:

(5.2) L∗(Ed/K, 1) =
∏

m∈Oq(Vd)
|m| ·

∏
m∈Oq(Sd)

(
1− tm(−1)J(m) · q−|m|

)
.

Remark 5.3. By Theorem 5.1 above, the analytic rank ρ(Ed/K) is equal to
rank(Ed(K)). The expression for ρ(Ed/K) obtained in the previous remark
allows us to retrieve a result of Ulmer stating that the ranks of Ed(K)
are unbounded as d ranges through integers coprime to q (see [18, §2-§4]
and [19, Lect. 4, Thm. 3.1.1]). More precisely, one can show that there are
infinitely many integers d′ ≥ 2 coprime to q, such that rank(Ed′(K)) �q

d′/log d′, where the implied constant is effective and depends only on q.
We refer to [4, Prop. 7.3.5] for more details.

We conclude this subsection by recording the following estimate (see
also [10, §2]):

Corollary 5.4. When d ≥ 2 runs over the integers coprime to q, one has

log
(
|X(Ed/K)| · Reg(Ed/K)

)
logH(Ed/K) = 1 + logL∗(Ed/K, 1)

logH(Ed/K) +O

( log d
d

)
,

where the implicit constant is effective and depends at most on q.

Proof. We first note that Theorem 5.1 ensures that X(Ed/K) is a finite
group, so that the quantity on the left-hand side makes sense. For any
integer d ≥ 2 coprime to q, we take the logarithm of (5.1) and divide
throughout by logH(Ed/K). Reordering terms, we obtain that

log
(
|X(Ed/K)| · Reg(Ed/K)

)
logH(Ed/K)

= 1 + logL∗(Ed/K, 1)
logH(Ed/K) + log

(
τ(Ed/K) · q · |Ed(K)tors|−2)

logH(Ed/K) .

Corollary 1.6 then allows us to control the size of the right-most term.
This yields the desired result. �
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5.2. Analogue of the Brauer–Siegel theorem. We finally turn to the
proof of the asymptotic estimate announced in Theorem B of the introduc-
tion:

Theorem 5.5. When d ≥ 2 ranges through integers coprime to q, one has
the asymptotic estimate:

(5.3) log
(
|X(Ed/K)| · Reg(Ed/K)

)
∼ logH(Ed/K) (as d→∞).

Proof. Given what has already been proved, very little remains to be done:
by Corollary 5.4, we know that

log
(
|X(Ed/K)| · Reg(Ed/K)

)
logH(Ed/K) = 1 + logL∗(Ed/K, 1)

logH(Ed/K) + O

( log d
d

)
,

as d tends to +∞. Further, Theorem 4.2 implies that, for all ε ∈ (0, 1/4),
there exists a constant C5 > 0 such that∣∣∣∣ logL∗(Ed/K, 1)

logH(Ed/K)

∣∣∣∣ ≤ C5 ·
( log log d

log d

)1/4−ε
(as d→∞).

The concatenation of these two results thus yields that, as d→∞, one has
log

(
|X(Ed/K)| · Reg(Ed/K)

)
logH(Ed/K) = 1 +O

(( log log d
log d

)1/4−ε)
where the implicit constant here is effective and depends at most on q, p
and ε. This is more than enough to prove Theorem 5.5. �

Remark 5.6. In [10], Hindry and Pacheco suggest to investigate the as-
ymptotic behaviour of the Brauer–Siegel ratio

Bs(E/K) := log
(
|X(E/K)| · Reg(E/K)

)/
logH(E/K),

as E runs through a family of nonisotrivial elliptic curves over K.
If E`̀ denotes the family of all such elliptic curves ordered by differential

height, they show (see [10, Coro. 1.13]) that
0 ≤ lim infE∈E`̀ Bs(E/K) ≤ lim supE∈E`̀ Bs(E/K) = 1,

conditionally to the BSD conjecture for all E ∈ E`̀ .
In this terminology, Theorem 5.5 above can be rephrased as follows: the

ratio Bs(Ed/K) has a limit when Ed ranges through the Hessian family of
elliptic curves (with d→∞), and this limit is 1 (unconditionally).
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