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Twisting eigensystems of Drinfeld Hecke
eigenforms by characters

par Rudolph PERKINS

Résumé. Nous considérons des questions posées par Goss concer-
nant la modularité des modules de Drinfeld de rang un définis sur
le corps des fonctions rationnelles en une variable, avec coefficients
dans un corps fini.

Pour chaque caractère de Dirichlet à valeurs dans un corps fini,
nous introduisons des opérateurs de projection sur des espaces de
formes modulaires de Drinfeld avec caractère, de poids et type
donnés. Ces opérateurs envoient des formes propres pour les opé-
rateurs de Hecke sur des formes propres de Hecke, dont le système
de valeurs propres est tordu par le caractère de Dirichlet. À la diffé-
rence du cas classique, l’effet de ces opérateurs sur les u-expansions
à la Goss pour ces formes propres, et même sur les A-expansions
au sens de Petrov, est plus compliqué que le simple fait de tordre
les coefficients des u- (ou A-) expansions par le caractère donné.

Nous introduisons aussi des séries d’Eisenstein avec caractère,
avec niveau irréductible p, et nous démontrons qu’avec leurs trans-
formées de Fricke, elles sont des formes propres possédant un nou-
veau type d’A-expansion. Nous démontrons des congruences entre
certaines formes paraboliques dans la famille spéciale de Petrov, et
les séries d’Eisenstein et leurs transformées de Fricke introduites
ici, et nous démontrons que pour tout poids, il y a autant de sé-
ries d’Eisenstein avec caractère, linéairement indépendantes, que
de formes paraboliques pour Γ1(p).

Abstract. We address some questions posed by Goss related
to the modularity of Drinfeld modules of rank 1 defined over the
field of rational functions in one variable with coefficients in a
finite field.

For each positive characteristic valued Dirichlet character, we
introduce certain projection operators on spaces of Drinfeld modu-
lar forms with character of a given weight and type such that when
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applied to a Hecke eigenform return a Hecke eigenform whose
eigensystem has been twisted by the given Dirichlet character. Un-
like the classical case, however, the effect on Goss’ u-expansions
for these eigenforms (and even on Petrov’s A-expansions) is more
complicated than a simple twisting of the u- (or A-) expansion
coefficients by the given character.

We also introduce Eisenstein series with character for irre-
ducible levels p and show that they and their Fricke transforms
are Hecke eigenforms with a new type of A-expansion and A-
expansion in the sense of Petrov, respectively. We prove congru-
ences between certain cuspforms in Petrov’s special family and the
Eisenstein series and their Fricke transforms introduced here, and
we show that in each weight there are as many linearly indepen-
dent Eisenstein series with character as there are cusps for Γ1(p).

1. Introduction
1.1. Set-up. Let Fq be the finite field with q elements of characteristic
p. Let A := Fq[θ], K := Fq(θ), and K∞ := Fq((1/θ)), the completion of
K with respect to the non-archimedean absolute value | · | normalized so
that |θ| = q. Let C∞ be the completion of an algebraic closure of K∞
equipped with the canonical extension of | · |, also denoted by the same
symbol. Finally, let A+ denote the multiplicative submonoid of A consisting
of the monic polynomials in θ.

Let Ω := C∞ \K∞ be Drinfeld’s period domain of rank 2 Drinfeld mod-
ules equipped with its usual structure as a rigid analytic space. For z ∈ C∞,
let

|z|= := inf
κ∈K∞

|z − κ| ;

trivially, for all z ∈ Ω, |z| ≥ |z|=. The group GL2(K∞) acts on Ω via linear
fractional transformations compatibly with the rigid analytic structure; i.e.
for γ =

(
a b
c d

)
∈ GL2(K∞) and z ∈ Ω, we define γz := az+b

cz+d .
We let γ ∈ GL2(K) act on rigid analytic functions f : Ω→ C∞ via

f |mk [γ] : z 7→ (det γ)mj(γ, z)−kf(γz) ,

where, as usual, j(
(
a b
c d

)
, z) = cz+d andm, k can be arbitrary non-negative

integers. We recall the formula for the composition of two slash operators
which we employ tacitly throughout the sequel:

For all k,m1,m2 ≥ 0 and γ1, γ2 ∈ GL2(K),
( · |m1

k [γ1])|m2
k [γ2] = (det γ2)m2−m1( · |m1

k [γ1γ2]) .

For m = 0, the formula is the same, but we shall often just write f |k[γ] for
f |0k[γ]. Similarly, if m = k = 0, we may write f |[γ] := f |00[γ].
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1.1.1. Drinfeld Modular Forms. Throughout the sequel, p will denote
a monic irreducible polynomial of A, and m an arbitrary monic polynomial.

For each such m 6= 1, we have the following three fundamental subgroups
of Γ(1) := GL2(A):

Γ(m) := {γ ∈ GL2(A) : γ ≡ ( 1 0
0 1 ) mod mA} ,

Γ0(m) :=
{(

a b
c d

)
∈ GL2(A) : c ∈ mA

}
,

Γ1(m) :=
{(

a b
c d

)
∈ GL2(A) : c ∈ mA and d ≡ 1 (mod mA)

}
,

and we wish to study spaces of C∞-valued modular forms for the latter two
groups. While such forms were introduced by D. Goss in his thesis, they
are now commonly dubbed Drinfeld modular forms.

Definition 1.1 ([8, (4.1)]). Let Γ be a subgroup of Γ(1) containing Γ(m)
for some m. The m of least degree will be called the level of Γ.

We write Mm
k (Γ) for those rigid analytic functions f : Ω → C∞ such

that

f |mk [γ] = f , ∀ γ ∈ Γ , and(1.1)
f |mk [γ] is bounded on {z ∈ Ω : |z|= ≥ 1} , ∀ γ ∈ Γ(1) .(1.2)

We say such f ∈ Mm
k (Γ) is a Drinfeld modular form for Γ of weight k

and type m.
If, for all γ ∈ Γ(1), we have f |mk [γ](z) → 0 as |z|= → ∞, we say f is a

cuspidal Drinfeld modular form and write f ∈ Smk (Γ).
As for the slash operators above we may abbreviate M0

k (Γ) by Mk(Γ).

1.1.2. Expansions at the cusps. By Goss’ Lemma, e.g. [10, Thm. 4.2],
any rigid analytic function on Ω invariant under z 7→ z + a, for all a ∈ mA
(i.e. which is mA-periodic), has a doubly infinite series expansion in the
parameter

um(z) := m

π̃

∑
a∈mA

1
z + a

,

which converges for |z|= sufficiently large; here π̃ is a fixed choice of funda-
mental period of the Carlitz module. Notice that

um(z)→ 0 as |z|= →∞ , and that

um(z) = u1(z/m) := 1
π̃

∑
a∈A

1
z/m + a

.

Thus, any function which is bounded on {z ∈ Ω : |z|= ≥ 1} and mA-periodic
will have a power series expansion in C∞[[um]]. Note that this power series
uniquely determines the function as Ω is connected as a rigid analytic space.
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We recall the Carlitz exponential function defined by

(1.3) expC(z) := z
∏

06=a∈A

(
1− z

π̃a

)
,

where π̃ is the fundamental period of the Carlitz module fixed above, alge-
braic over K∞. The function expC is entire and Fq-linear in z with coeffi-
cients in K, a result originally due to Carlitz. One has the basic relation

(1.4) u1(z) = 1
expC(π̃z) ,

an identity of rigid meromorphic functions on C∞ \A, and we will write u
for u1 to follow.

1.1.3. Single, double, and i-times cuspidal. Fix a congruence sub-
group Γ ⊂ Γ(1). For each γ ∈ Γ(1), there is a monic element mγ ∈ A of
least degree such that for all f ∈Mm

k (Γ) the form f |mk [γ] is mγA-periodic,
and hence f |mk [γ] has an expansion in the parameter umγ .

We say that a modular form f ∈ Mm
k (Γ) is i-times cuspidal (here Γ is

fixed), if for all γ ∈ Γ(1) the umγ -expansion for f |mk [γ] is divisible by uimγ .
In particular, we say that such an f is exactly i-times cuspidal for Γ if f
is i-times cuspidal and if for some γ ∈ Γ(1), f |mk [γ] vanishes exactly to the
order i in umγ . When i = 1 (resp. 2) we say that f is single (resp. double)
cuspidal.

1.1.4. Hecke operators. Throughout q will denote a monic irreducible
polynomial in A, distinct from p. The following lemma will allow us to
define Hecke operators on the spaces Mm

k (Γ1(m)). The proof is elementary,
and we omit it for the sake of brevity; see [6, p. 104–105] for a plan of proof
in the classical case.

Lemma 1.2. Let m, q ∈ A+, with q additionally irreducible.
If q 6 | m, then the matrices

(
1 β
0 q

)
, with |β| < |q|, and any matrix

( µ ν
m q )

(
q 0
0 1

)
∈Mat2(A) such that ( µ ν

m q ) ∈ SL2(A) give a full set of distinct

representatives for the quotient Γi(m)\Γi(m)
(

1 0
0 q

)
Γi(m), for both i = 0, 1.

If q|m, the matrices
(

1 β
0 q

)
, with |β| < |q| give a full set of distinct rep-

resentatives.

Definition 1.3. For f ∈ Mm
k (Γ1(m)) and a monic irreducible q ∈ A, we

define

Tqf :=

qk−m
(∑
|β|<|q| f |mk

[(
1 β
0 q

)]
+ f |mk

[( µq ν
mq q

)])
, q 6 |m

qk−m
∑
|β|<|q| f |mk

[(
1 β
0 q

)]
, q | m ,

where for (m, q) = 1 we take any µ, ν ∈ A such that µq− νm = 1.
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As usual, for each irreducible q, the Hecke operator Tq acts onMm
k (Γ1(m))

preserving both single cuspidality and double cuspidality.

1.1.5. Some basic examples.
(1). An important first example is the family of Eisenstein series for Γ(m)

whose definition goes back to Goss [12]. For
(1.5) v ∈ Vm := (A/mA)2 \ (0, 0) ,
let

E(k)
v (z) :=

∑
a,b∈A

(a,b)≡v(mA)

1
(az + b)k .

To see that these forms are bounded at the cusps, notice that each individ-
ual E(k)

v is bounded at infinity and observe that Γ(1) acts on the right of
Vm in the natural way so that we have

E(k)
v |k[γ] = E(k)

vγ , for all γ ∈ Γ(1) .
Cornelissen has shown that a subset of these forms given by fixing the
weight k and varying v in any subset of Vm in bijection with the cusps
of Γ(m), gives a basis for the non-cuspidal forms for Γ(m) of weight k,
[5, (1.12)]. Finally, we mention that Gekeler has determined the precise
location of the zeros of Ekv in [9].

(2). As another example, A. Petrov has shown1 in [20] that for all positive
integers s, the function
(1.6) fs(z) :=

∑
a∈A+

a1+s(q−1)u(az)

represents a cusp form of weight 2 + s(q − 1) and type 1 for Γ(1). Such an
expansion is an example of what we will call an A-expansion in the sense of
Petrov. The remaining examples discovered by Petrov arise from the family
fs through the action of hyperderivatives in the z variable, as shown in [21].
For example, with this approach one may obtain the following A-expansion,
due to López [15], for the cuspidal Hecke eigenform

∆(z) =
∑
a∈A+

aq(q−1)u(az)q−1 .

The interest in A-expansions in general lies in their good properties with
respect to the Hecke operators, which are also indexed by the monic ele-
ments of A. In particular, Petrov’s family gives canonical representatives for

1We make a brief historical note. Two of the forms in Petrov’s special family were known prior
to his investigations. When s = 0, one obtains the expansion at infinity for the false Eisenstein
series E of Gekeler (see [7] where this function was first discovered), a Drinfeld quasi-modular
form of weight 2, type 1 and depth 1 (see [4] for these notions); we shall discuss this form more
below. When s = 1, this is the A-expansion obtained by López [15] for a suitable multiple of the
unique normalized cusp form h of weight q + 1 and type 1 for Γ(1).
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the space of single cusp forms modulo double cusp forms for Γ(1) which are
themselves Hecke eigenforms; indeed, for each s ≥ 1 and each irreducible q
one has

(1.7) Tqfs = qfs .

Additionally, they give a completely explicit expansion near the infinite cusp
on Ω in contrast to the u-expansions guaranteed by Goss whose coefficients
are very difficult to compute in general; see e.g. [7, §10] where some of these
coefficients are computed for forms for Γ(1) of small weights.

(3). Finally, there is a canonical choice of representative for the space of
single cuspidal forms modulo double cuspidal forms of weight two and type
1 for Γ0(p); see also [19]. We recall the false Eisenstein series of Gekeler
normalized via its A-expansion

E(z) :=
∑
a∈A+

au(az) ,

and we remind the reader that Gekeler first obtained this form as the
logarithmic derivative of ∆, [7, (8.2)].

Observe that unlike the classical situation, this “Eisenstein series” van-
ishes to the order one in u at the infinite cusp. This function is a Drinfeld
quasi-modular form in the sense of Bosser–Pellarin [4] in that it satisfies

E|12[γ](z) = E(z) + −1
π̃

d
dz j(γ, z)
j(γ, z) , ∀ γ ∈ Γ(1) ;

see [7, (8.4)] for Gekeler’s original demonstration of this fact. From this it
follows for all γ ∈ Γ(1), that we have

Ep(z) := E(z)− pE(pz) ∈M1
2 (Γ0(p)) .

Further, one has

z−2Ep(−1/z) = −1
p
Ep(z/p) ,

allowing us to see that Ep is exactly single cuspidal at the zero cusp. This
function is additionally a Hecke eigenform with TqEp = qEp, for all q co-
prime to p. Thus, Ep gives the canonical representative for the space of
cusp forms modulo double cusp forms claimed above.

1.2. Böckle’s Eichler–Shimura Relation and Goss’ Questions. In
his habilitation thesis [3], G. Böckle showed that the naive local L-factors

Lf,p(u)−1 := 1− uλp ∈ C∞[u]

one can associate to a cuspidal Hecke eigenform f with Tpf = λpf , for
all but finitely many p, actually arise from something geometric: a rank 1
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τ -sheaf. Further, the connection with τ -sheaves and the cohomological for-
malism of crystals allowed Böckle to prove that for each y ∈ Zp, the follow-
ing naive L-series attached to f

Lf (x, y) :=
∏′

p∈Spec(A)
Lf,p

(
xdeg p

(
p

θdeg p

)y)
∈ C∞[[x]]

is entire in x; here the primed product indicates that we are ignoring a
finite set of irreducibles2 p containing those dividing the level of f .

Following Böckle’s work, the question arises of which rank 1 τ -sheaves
one obtains from Drinfeld modular forms via this Eichler–Shimura rela-
tion, and one has the simpler question of when the local L-factors of a
rank 1 Drinfeld module agree (up to translation of the argument: Lf,p(u) 7→
Lf,p(pku), for some integer k not depending on p) with the local L-factors
of a cuspidal Drinfeld Hecke eigenform. The results of this note concern
this latter question.

1.2.1. New Results. The first purpose of this paper is to show that one
may twist the eigensystems of Drinfeld Hecke eigenforms by Dirichlet char-
acters; see Theorem 2.8 below. The projection operators of §2.2 arising in
this task are exactly similar to those in the classical setting over the integers,
but unlike the classical case, where the cuspform’s q-expansion coefficients
are simply twisted by a character, the effect of our projection operators on
Goss’ u-expansion coefficients does not appear to be so transparent.

This leads us to provide a sufficient condition for a Drinfeld modular form
to have non-vanishing projection in Corollary 2.6. For example, letting f
be one of Ep, fs, or ∆, as in §1.1.5, and χ : A→ C∞ a Dirichlet character
whose conductor is coprime to the level of f with associated normalized
projection $χ (the non-normalized projection is defined in Definition 2.1),
we deduce in Corollary 2.9 that the twisted form $χf is non-zero and
satisfies

Tq$χf =
{
qχ(q)$χf , f = Ep or fs ,
qq−1χ(q)$χf , f = ∆ ,

for all q outside of a finite set of irreducibles depending on f and χ.
In Proposition 2.3, we see that our projection operators send cusp forms

to cuspforms, but we are unable to show that they do not decrease the
order of vanishing at the cusps. Nevertheless, we show that for the cusp-
form ∆ just above, choosing χ appropriately, as in [13, (76)], $χ∆ gives

2For more on this point see Goss’ survey [13] and the original article (ibid.).
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an explicit, natural cuspform demonstrating that the local L-factors of a
generic Drinfeld module of rank 1 defined over K come from those of an ex-
plicit cuspidal Drinfeld Hecke eigenform. We expect, but do not show, that
$χ∆ is even double cuspidal, and thus it should provide an explicit such
form answering Goss’s [13, Question 2] and its generalization by explicit
construction. We note that if the level of χ is n, then the level of $χ∆ is
at most n2, though it very well may be a divisor of this. We leave open the
question of the minimal weight and level at which there is a double cuspidal
Hecke eigenform with eigensystem qkχ(q), for some k ≥ 0 independent of q.

Now, we remind the reader that Böckle has already shown that many
Goss abelian L-functions may be obtained from single (and not double)
cuspidal Drinfeld modular forms (i.e. the eigensystem of this form is λp =
χ(p)pk for some finite image Dirichlet character χ defined on A and some
integer k ≥ 0), see [13, Rem. 17]. The question of explicitly constructing
such forms was also posed by Goss. The projection operators constructed
in this paper allow us to give candidates for Goss’ question, but (again) so
far we have not found a clean way to determine the exact order of vanishing
at the cusps for our forms after projection.

Finally, in §3 we construct Eisenstein series with character which are
Hecke eigenforms and have the same Dirichlet–Goss abelian L-function as
the forms in the theorem above: Proposition 3.6. Half of the Eisenstein se-
ries with character constructed below will have A-expansions in the sense
of Petrov (3.4), and the other half will have twisted A-expansions (3.5);
the reader should see the section on specializations at roots of unity in [18]
for more on the “twisted uniformizers” appearing in the later type of A-
expansion. We close with some congruences (§3.4) between certain Eisen-
stein series with character constructed below and forms in Petrov’s family,
and, after some preparation below, twisting will provide further congru-
ences.

Acknowledgements. This paper began as an attempt to generalize, by
first principles, certain congruences found by Pellarin and the author in [19].
The focus shifted after G. Böckle heard of the constructions in this paper
and directed the author to the intriguing paper [13] of Goss. We are grateful
to these three for their mentorship. We also heartily thank the anonymous
referee for their careful reading of this script and valuable suggestions which
helped to add several valuable elements herein.
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built upon it. David, you will be deeply missed. We carry your encourag-
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2. Twisting Hecke eigensystems by characters
2.1. Dirichlet Characters and χ-eigenspaces.

2.1.1. Characters. If we write m = pr1
1 . . . prnn for distinct monic irre-

ducible polynomials pi ∈ A and positive integers ri, each Dirichlet charac-
ter we consider is obtained by choosing a root ζi ∈ C∞ of the polynomial
pi, for each i, and sending each a ∈ A to

(2.1) χ(a) = a(ζ1)e1 . . . a(ζn)en ,

for integers 0 ≤ ei < |pi| − 1. We will write ̂(A/mA)× for the group of such
characters. All such characters arise from the square-free part of m, namely
p1 . . . pn; in other words,

̂(A/mA)× = ̂(A/p1 . . . pnA)×.

We call χ primitive if 0 < ei < |p|−1, for i = 1, . . . , n, for such primitive
χ we call p1 . . . pn the conductor of χ. Finally, we will also use the notation
χζ : A → Fq(ζ) for the Fq-algebra map determined by θ 7→ ζ. With this
notation, the character χ from (2.1) becomes

χ = χe1
ζ1
. . . χenζn .

2.1.2. Signs. Each such character χ has a unique sign sχ∈{0, 1, . . . , q−2}
such that

χ(ζ) = ζsχ , ∀ ζ ∈ F×q ⊂ (A/mA)×.
From (2.1) we see that sχ is the remainder after division of e1 + · · · + er
by q − 1. Notice, sχ does not depend on the choice of roots ζi used to
describe χ.

2.1.3. Forms with character. As in the classical case, Γ1(m) is the ker-
nel of the homomorphism Γ0(m) → (A/mA)× sending γ =

(
a b
c d

)
to d

mod m, and via this map one has

Γ0(m)/Γ1(m) ∼= (A/mA)×.

For each γ =
(
a b
c d

)
∈ Γ0(m) and each χ ∈ ̂(A/mA)×, we define

χ(γ) = χ(d) .

For each χ ∈ ̂(A/mA)× and each positive integer l, we define the l-th
generalized χ-eigenspace of Mm

k (Γ1(m)) by

Mm
k (m, χ, l) :=

{
f ∈Mm

k (Γ1(m)) : (( · |mk [γ])− χ(γ))lf = 0 ,
for all γ ∈ Γ0(m)

}
.

We write
Mm
k (m, χ) := Mm

k (m, χ, 1) ,
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following classical notation. We define the eigenspaces Smk (m, χ) for cusp-
forms similarly.

The need for these generalized eigenspaces can be seen via the next
example and essentially arises due to the lack of non-trivial p-th roots of
unity in C∞. In particular, unlike the classical setting, we will in general
have a strict containment

⊕χMm
k (m, χ) ⊂Mm

k (Γ1(m)) ,

where the direct sum runs over all χ ∈ ̂(A/p1 . . . pnA)× for m = pr1
1 . . . prnn ,

as before. Note that the containment just above is an equality if and only
if m is square-free.

2.1.4. Example: Derived Eisenstein Series. In §4.4.3 of [19], many
forms in the generalized eigenspaces described above were constructed via
vectorial modular forms over Tate algebras. For example, letting ζ ∈ Facq ⊂
C∞ with minimal polynomial p ∈ A, write

a(θ) =
∑
n≥0

a(n)(ζ) · (θ − ζ)n ,

by making the substitution θ 7→ (θ− ζ) + ζ and expanding the result using
the binomial theorem. It follows from Proposition 4.22 of [19] that the
derived Eisenstein series

Eζ,0 :=
∑′

a,b∈A

a(0)(ζ)
az + b

, Eζ,1 :=
∑′

a,b

a(1)(ζ)
az + b

, . . . , Eζ,n :=
∑′

a,b

a(n)(ζ)
az + b

span a subspace of M1
1 (Γ1(pn+1)) on which γ =

(
a b
c d

)
∈ Γ0(pn+1) acts via


Eζ,n|11[γ]
Eζ,n−1|11[γ]

...
Eζ,0|11[γ]

 =


d(ζ) d(1)(ζ) . . . d(n)(ζ)

0 d(ζ) . . . ...
... . . . . . . d(1)(ζ)
0 . . . 0 d(ζ)



Eζ,n
Eζ,n−1

...
Eζ,0

 .

Further, in Corollary 5.24 of [19], it is shown that away from the level each
Eζ,j is a Hecke eigenform with eigenvalue q for Tq. For a similar construction
in the setting of the Carlitz module, see [17].

2.2. Projection operators. For the remainder of the article, a, m, n, p
and q will be monic elements in A, with p, q additionally irreducible, and ψ
will denote a character of conductor m. We do not exclude the possibility
m = 1 or that ψ is the trivial character, i.e. a 7→ 1, for all a ∈ A. In the
case where both are trivial, we identify Mm

k (m, ψ) and Mm
k (Γ(1)).
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Definition 2.1. Let f : Ω → C∞ be a rigid analytic function, and let
χ ∈ ̂(A/nA)×. Define

$̂χf :=
∑
|β|<|n|

χ−1(β)f |mk
[(

n β
0 n

)]
,

which is again easily seen to be a rigid analytic function on Ω.
Lemma 2.2. Let f : Ω → C∞ be a rigid analytic function, and suppose,
for some 0 6= m ∈ A and some cn, cn+1, cn+2, . . . ∈ C∞, with n ≥ 1,

f(z) =
∑
i≥n

cium(z)i , for all |z|= sufficiently large.

Then, for all γ =
(
a b
0 d
)
∈M2(A)∩GL2(K) and for all k,m ≥ 0, there exist

cγn, c
γ
n+1, c

γ
n+2, . . . ∈ C∞, depending on γ, such that

f |mk [γ](z) =
∑
i≥n

cγi udm(z)i , for all |z|= sufficiently large.

Proof. Let γ =
(
a b
0 d
)
∈M2(A)∩GL2(K), and assume f(z) =

∑
i≥n cium(z)i,

as in the statement. We have

uim|mk [γ](z) = a2md2m−ku

(
az + b

md

)i
=

a2md2m−ku( azmd)i

(1 + u( azmd) expC( π̃bmd))i
.

Expanding using geometric series (or Newton’s binomial theorem), we no-
tice that the right side above lies in u|a|idmC∞[[udm]]. Rearranging the sums,
while noting that the u( azmd)i on the right side above implies that only
finitely many coefficients ci contribute to each cγj and that the least power
of udm to appear is u|a|ndm , gives the result. �

We have the following analog to the classical result on twisting the
coefficients of modular forms by characters. Its proof is modeled on [14,
Prop. III.3.17] (see also [2]). While only slightly different here due to the
presence of the determinant character, we present a full proof for complete-
ness.
Proposition 2.3. Let f ∈ Mm

k (m, ψ), and let χ ∈ ̂(A/nA)×. For any
monic a ∈ A, divisible by both m and n2, we have

$̂χf ∈M
m+sχ
k (a, ψχ2) .

Furthermore, $̂χ sends cusp forms to cusp forms.
Proof. Let a be as above and view f ∈Mm

k (Γ1(a)). Let γ =
(
a b
c d

)
∈ Γ0(a).

After a small matrix calculation, we have that ($̂χf)|mk [γ] equals∑
|β|<|n|

χ−1(β)f |mk

[(
a+ βc

n b+ xβc
n2 − βd−xa

n
c d− cx

n

)(
n x
0 n

)]
,
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where |x| < |n| is the element such that x ≡ βda−1 (mod n), which exists
and depends uniquely on β, as both d and a are coprime to n. In particular,
if β = 0, then x = 0, and if β 6= 0, then β ≡ xad−1 ≡ xd−2 det γ (mod n).
Further, by our assumptions on a (so that c is divisible by n2), by our
definition of x, and by multiplicativity of the determinant, we have(

a+ βc
n b+ xβc

n2 − βd−xa
n

c d− cx
n

)
∈ Γ0(a) ⊂ Γ0(m) .

Hence, using f ∈Mm
k (m, ψ) and β ≡ xd−2 det γ (mod n),

($̂χf)|mk [γ] := ψχ2(γ)
(det γ)sχ

∑
|β|<|n|

χ−1(x)f |mk
[(

n x
0 n

)]
= ψχ2(γ)

(det γ)sχ $̂χf ,

giving the required functional equation.
Finally, we analyze what happens at the cusps. It is enough to understand

f |mk [( n β
0 n

)γ], for each |β| < |n| and each γ ∈ Γ(1). For γ =
(
a b
c d

)
∈ Γ(1) and

each such β, we have(
n β
0 n

)(
a b
c d

)
=
(
na+ βc nb+ βd

nc nd

)
.

If c = 0, since $̂χf is A-periodic, the u-expansion at infinity is preserved
and there is nothing to show. If na + βc = 0, we apply Lemma 2.2 to
f |mk [( 0 1

1 0 )] and
(
nc nd
0 nb+βd

)
, noting that nc(nb+ βd) ∈ n2F×q , which yields a

u-expansion that vanishes at infinity. If both c and na + βc are non-zero,
we let g ∈ A+ be their greatest common divisor, and we choose x, y ∈ A
such that

γ0 :=
(

y x
−nc/g (na+ βc)/g

)
∈ SL2(A) .

Then,(
n β
0 n

)(
a b
c d

)
=
(

y x
−nc/g (na+ βc)/g

)−1 (
g y(nb+ βd)
0 n2/g

)
.

Thus applying Lemma 2.2 to f |mk [γ−1
0 ] and

(
g y(nb+βd)
0 n2/g

)
again yields a u-

expansion which vanishes at infinity and finishes the proof. �

2.2.1. Non-vanishing. We begin will a lemma on the convolution of two
Dirichlet characters, as defined above, or what amounts to some kind of
function field Jacobi sums. Unfortunately, we do not see a relation with
Thakur’s Gauss or Jacobi sums, contrary to what one might expect from
comparison with the classical case. We focus on such convolutions for
square-free moduli, as the Dirichlet characters we consider in this paper
have such conductors.
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Consider n = p1 . . . pr and ζi such that pi(ζi) = 0. Let

(2.2) χ1 :=
r∏
i=1

χjiζi and χ2 :=
r∏
i=1

χkiζi ,

with 1 ≤ ki, ji < |pi| − 1, for all i = 1, 2, . . . , r,

so that these are characters of the same conductor n.
For such characters and each |δ| < |n|, define

(χ1 ∗ χ2)(δ) :=
∑
|a|<|n|

χ1(a)χ2(δ − a) .

In the next result, when writing χ1χ2 we shall mean

χ1χ2 :=
r∏
i=1

χji+kiζi
,

where ji + ki is the unique representative in 0, 1, . . . , |pi| − 2 for ji + ki
(mod |pi|−1). This χ1χ2 is the primitive character associated to the point-
wise product function a 7→ χ1(a)χ2(a).

Lemma 2.4. For characters χ1, χ2, as in (2.2), and for each |δ| < |n|, we
have

(χ1 ∗ χ2)(δ) = (χ1χ2)(δ) ·
r∏
i=1

(−1)1−ji

(
ki

|pi| − 1− ji

)
.

Proof. Letting χ1 and χ2 as above, we have

(χ1 ∗ χ2)(δ) :=
∑
|a|<|n|

r∏
i=1

a(ζi)ji(δ(ζi)− a(ζi))ki

=
k1∑
l1=0

. . .
kr∑
lr=0

(
r∏
i=1

(−1)li
(
ki
li

)
δ(ζi)ki−li

) ∑
|a|<|n|

r∏
i=1

a(ζi)ji+li .

Now, the sum over |a| < |n| is non-zero if and only if ji+li = |pi|−1 for each
i = 1, 2, . . . , r. However, this condition will not be satisfied if ki+ji < |pi|−1
for some i. Nevertheless, in this situation, the binomial coefficient on the
right side of the desired identity vanishes by the usual convention, and the
identity holds trivially. If we do have ki+ji ≥ |pi|−1 for each i = 1, 2, . . . , r,
so that there exists a 0 ≤ li ≤ ki such that ji + li = |pi| − 1 for each
i = 1, 2, . . . , r, then the sum over |a| < |n| equals

|(A/nA)×| = (|p1| − 1) . . . (|pr| − 1) = (−1)r,

and ki − li = ki + ji − (|pi| − 1) is non-negative and strictly less than
|pi| − 1. Hence, ki − li = ki + ji, and inputting all of this data, we obtain
the identity. �



916 Rudolph Perkins

From the previous result we see that the (non-)vanishing of these positive
characteristic Jacobi sums has a very combinatorial description in terms of
the base p expansions of the ki and ji, by Lucas’ Theorem.

Proposition 2.5. Let χ1, χ2 ∈ ̂(A/nA)×, as in (2.2), and let f ∈Mm
k (m, ψ).

Let s1 := sχ1.
We have

$̂χ2$̂χ1f = n2s1+2m−k ·
(

r∏
i=1

(−1)ji+1
(
|pi| − 1− ki

ji

))
$̂χ2χ1f .

In particular, when χ1 = χ−1
2 , we have

$̂χ−1
1
$̂χ1f = (−1)j1+···+jr+rn2s1+2m−k ∑

|δ|<|n|
f |mk

[(
n δ
0 n

)]
.

Proof. Consider $̂χ2$̂χ1f , for characters χ1, χ2 ∈ ̂(A/nA)×. Taking into
account that $χ1f ∈ Mm+s1

k (l, ψχ2
1) when f ∈ Mm

k (m, ψ), where l =
lcm(m, n2), we have

$̂χ2$̂χ1f = n2s1
∑
|β|<|n|

∑
|α|<|n|

χ−1
2 (β)χ−1

1 (α)f |mk
[(

n α
0 n

)(
n β
0 n

)]

= n2s1+2m−k∑
α,β

χ−1
2 (β)χ−1

1 (α)f |mk
[(

n α+ β
0 n

)]

= n2s1+2m−k ∑
|δ|<|n|

 ∑
|α|<|n|

χ−1
2 (δ − α)χ−1

1 (α)

 f |mk [(n δ
0 n

)]

= n2s1+2m−k ·
(

r∏
i=1

(−1)ji+1
(
|pi| − 1− ki

ji

))
$̂χ2χ1f . �

Corollary 2.6. Let n ∈ A+ be square-free. Suppose, for some 1 ≤ i ≤ q,
the form f ∈Mm

k (m, ψ) has an A-expansion of the shape

f(z) =
∑
a∈A+

cau(az)i , for some ca ∈ C∞ ,

and suppose further that there exists an a ∈ A+, coprime to n, such that
ca 6= 0. Then, for each primitive χ ∈ ̂(A/nA)×, we have

$̂χf 6= 0 .

Proof. Following Gekeler’s computation leading to [7, (7.3)], we obtain∑
|δ|<|n|

ui|mk
[(

n δ
0 n

)]
(z) =

{
Gn,i(nu(naz)) , if (n, a) = 1,
0 , otherwise,
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where Gn,i is the i-th Goss polynomial for the lattice of Carlitz n-torsion.
Thus, after observing that Gi,n(X) = Xi, for 1 ≤ i ≤ q, we obtain the
identity ∑

|δ|<|n|
f |mk

[(
n δ
0 n

)]
(z) = ni

∑
a∈A+

(a,n)=1

cau(anz)i .

In [16, Thm. 3.1] it is shown that a rigid analytic function with non-
vanishing A-expansion at infinity is non-zero, and, thus, by our assumption
on the existence of an a coprime to n such that ca 6= 0, we deduce the non-
vanishing of the A-expansion on the right side of the identity just above.
Finally then, the non-vanishing of $̂χf follows from the last proposition.

�

2.2.2. Commutation Relations. We note here that, for f ∈Mm
k (m, ψ),

the Hecke action of Definition 1.3 becomes

(2.3) Tqf = qk−m

ψ(q)f |mk
[(

q 0
0 1

)]
+

∑
|β|<|q|

f |mk
[(

1 β
0 q

)] .
Proposition 2.7. Let f ∈ Mm

k (m, ψ), and let χ ∈ ̂(A/nA)×. For all irre-
ducible q with (q, nm) = 1, we have

Tq$̂χf = χ(q)$̂χTqf ,

where the Hecke operators act on the proper weight, level, and type for $̂χf
and f , respectively.

Proof. We have

Tq$̂χf = qk−(m+sχ)

ψχ2(q)
∑
|α|<|n|

χ−1(α)f |mk [( n α
0 n )] |m+sχ

k

[(
q 0
0 1

)]

+
∑
|β|<|q|

∑
|α|<|n|

χ−1(α)f |mk [( n α
0 n )] |m+sχ

k

[(
1 β
0 q

)]
= qk−m

ψχ2(q)
∑
|α|<|n|

χ−1(α)f |mk
[
( n α

0 n )
(
q 0
0 1

)]

+
∑
|β|<|q|

∑
|α|<|n|

χ−1(α)f |mk
[
( n α

0 n )
(

1 β
0 q

)] ,
where we have applied (2.3) using Proposition 2.3.

We check the commutativity of the matrices involved. We have(
n α
0 n

)(
q 0
0 1

)
=
(

1 α(1− qq∗)/n
0 1

)(
q 0
0 1

)(
1 k∗α
0 1

)(
n r∗α
0 n

)
,
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where q∗ is such that qq∗ ≡ 1 (mod n) and |r∗α| < |n| and k∗α are such that
αq∗ = r∗α + k∗αn. Observe that as α runs over the set {|α| < |n|}, rα does
too and r0 = 0.

Similarly, (
n α
0 n

)(
1 β
0 q

)
=
(

1 β
0 q

)(
1 kα
0 1

)(
n rα
0 n

)
,

where, as before, |rα| < |n| is such that αq = rα + kαn.
Thus,

1
qk−m

Tq$̂χf = ψχ2(q)
∑
|α|<|n|

χ−1(α)f |mk
[(

q 0
0 1

) (
n r∗α
0 n

)]
+

∑
|α|<|n|

χ−1(α)
∑
|β|<|q|

f |mk
[(

1 β
0 q

)
( n rα

0 n )
]
,

where in the first sum we have used the modularity of f and f |[( q 0
0 1 )] and in

the second sum we have used the modularity of
∑
|β|<|q| f |mk [( 1 β

0 q )]. Finally,
we observe that χ−1(α) = χ−1(q)χ−1(r∗α) = χ(q)χ−1(rα) and obtain

Tq$̂χf = qk−mχ(q)$̂χ

ψ(q)f |mk
[(

q 0
0 1

)]
+

∑
|β|<|q|

f |mk
[(

1 β
0 q

)] ,
which is what we wanted to show. �

The following result is immediate and resolves the second part of [13,
Question 1] on twisting a form’s Hecke eigensystem by Dirichlet characters,
whenever $̂χf is non-zero.

Theorem 2.8. Let f , χ, and q be as in the previous proposition. If Tqf =
λqf for some λq ∈ C∞, then

Tq$̂χf = χ(q)λq$̂χf .

Choosing the character χ appropriately, as in [13, 76)], the next result
affirmatively answers Goss’ [13, Question 2] (up to showing double cuspi-
dality!) and shows more generally that, for all but finitely many places, the
local L-factors of any Drinfeld module of rank 1 defined over K may be ob-
tained from the local L-factors of some explicit cuspidal Drinfeld modular
form of weight as small as two.

Corollary 2.9. For each square-free n ∈ A+ and for each primitive χ ∈
̂(A/nA)×, the forms $̂χf , with f = fs in Petrov’s family, f = ∆, or

f = Ep, with p an arbitrary monic irreducible in A, are all non-vanishing
cuspidal Hecke eigenforms with eigensystems χ(q)q, χ(q)qq−1, and χ(q)q,
respectively.
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2.2.3. Normalized Projections for Square-free Levels. In order to
keep the coefficient field of the u-expansion of $̂χf as close as possible to
that of the u-expansion for f , we must employ a slight generalization of the
Gauss sums introduced by Thakur [22] for Carlitz torsion extensions.

We direct the reader to [1, §2.3] for the basic definitions and properties of
Gauss–Thakur sums associated to characters of square-free moduli. Follow-
ing their notation, we will write g(χ) for the Gauss–Thakur sum associated
to χ ∈ ̂(A/nA)×, with n square-free. Let L be a finite extension of K, and
let R ⊂ L be the integral closure of A ⊂ K. For each Dirichlet character χ,
we write L(χ) for the smallest field extension of L containing the values of
χ, and we write R[χ] ⊂ L(χ) for the integral closure of A ⊂ K.

Definition 2.10. For rigid analytic functions f : Ω → C∞ and primitive
χ ∈ ̂(A/nA)× with n square-free, let

$χf := nk−2m−1g(χ−1)$̂χf .

We remind the reader that for all positive integers i and all k ≥ 0, the
binomial coefficient

(−i
k

)
is an integer, and we use the same symbol for its

reduction modulo p.

Proposition 2.11. For each i ≥ 1, we have

$χ(ui) = ui
∑
k≥1

k≡sχ (mod q−1)

(
−i
k

)g(χ−1)
n

∑
|β|<|n|

χ−1(β) expC( π̃β
n

)k
uk .

Proof. By (1.4),

(2.4) u(z + a/n) = u(z)
expC( π̃an )u(z) + 1

.

Thus, by Newton’s Binomial Theorem, we have

$χ(ui) = g(χ−1)
n

∑
|β|<|n|

χ−1(β)

 u

expC( π̃βn )u+ 1

i

= ui
∑
k≥0

(
−i
k

)g(χ−1)
n

∑
|β|<|n|

χ−1(β) expC( π̃β
n

)k
uk .

Now the sums ∑
|β|<|n|

χ−1(β) expC
(
π̃β

n

)k
, with k ≥ 0 ,

appearing in the line above, are integral over A and lie in the χ-eigenspace
of the extension K(χ, expC(π̃/n))/K(χ) under the action of Galois which,
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by [1, Lem. 16] is generated by the Gauss–Thakur sum g(χ). Thus, after
multiplying by g(χ−1)/n, the reflection formula [1, Prop. 15.2] tells us that
we are in the integral extension of A obtained by adjoining the values of
χ. When k = 0, this sum vanishes by orthogonality of characters, and
the vanishing of

∑
|β|<|n| χ

−1(β) expC( π̃βn )k for k 6≡ sχ (mod q − 1) is seen
by making the change of variables β 7→ ξβ, for a primitive multiplicative
generator ξ ∈ F×q . �

Remark 2.12. We noticed in the proof just above that the sums

s(χ, k) :=
∑
|β|<|n|

χ−1(β) expC
(
π̃β

n

)k
, with k ≥ 0 ,

vanish trivially for k = 0 and for k 6≡ sχ (mod q− 1). This non-congruence
is however not implied by the vanishing of these sums. Indeed, a quick com-
putation with SageMath [23] reveals that classifying the positive integers
k ≡ sχ (mod q − 1) for which s(χ, k) is non-zero might not be easy.

For example, for q = 5 and prime conductor n = θ2 + 2 with ζ such that
n(ζ) = 0, the full list of 1 ≤ i, j ≤ 23 such that∑

|β|<|n|
β(ζ)|n|−1−i expC(π̃β/n)j 6= 0

is given by
[j, i] :

[1, 1], [1, 5],
[2, 2], [2, 6], [2, 10],

[3, 3], [3, 7], [3, 11], [3, 15],
[4, 4], [4, 8], [4, 12], [4, 16], [4, 20],

[5, 1], [5, 5],
[6, 2], [6, 6], [6, 10],

[7, 3], [7, 7], [7, 11], [7, 15],
[8, 4], [8, 8], [8, 12], [8, 16], [8, 20],

[9, 1], [9, 5], [9, 9], [9, 13], [9, 17], [9, 21],
[10, 2], [10, 6], [10, 10],

[11, 3], [11, 7], [11, 11], [11, 15],
[12, 4], [12, 8], [12, 12], [12, 16], [12, 20],

[13, 1], [13, 5], [13, 9], [13, 13], [13, 17], [13, 21],
[14, 2], [14, 6], [14, 10], [14, 14], [14, 18], [14, 22],

[15, 3], [15, 7], [15, 11], [15, 15],



Twisting eigensystems of Drinfeld Hecke eigenforms by characters 921

[16, 4], [16, 8], [16, 12], [16, 16], [16, 20],
[17, 1], [17, 5], [17, 9], [17, 13], [17, 17], [17, 21],
[18, 2], [18, 6], [18, 10], [18, 14], [18, 18], [18, 22],
[19, 3], [19, 7], [19, 11], [19, 15], [19, 19], [19, 23],

[20, 4], [20, 8], [20, 12], [20, 16], [20, 20],
[21, 1], [21, 5], [21, 9], [21, 13], [21, 17], [21, 21],
[22, 2], [22, 6], [22, 10], [22, 14], [22, 18], [22, 22],
[23, 3], [23, 7], [23, 11], [23, 15], [23, 19], [23, 23].

We remind the reader that any f ∈ Mm
k (m, ψ) is A-periodic and thus

has a power series expansion at infinity in the parameter u. The next result
deals solely with the u-expansion at infinity of such forms.

Corollary 2.13. Let f ∈ Mm
k (m, ψ) and χ ∈ ̂(A/nA)×, primitive with n

square-free.
If f ∈ R[[u]], for some integral extension R over A, then $χf ∈ R[χ][[u]].

Proof. Using the identity of Proposition 2.11, summing over i, since ui
divides $χ(ui), as demonstrated above, we see that only finitely many
terms contribute to any given power of u. Thus, the claim on that the
coefficients lie in R[χ] is clear, and convergence does not pose an issue
when u is sufficiently small. �

Remark 2.14. Again, we direct the reader to [18, §5] where further study is
made on the rational functions of u given by $χ(u) using the point of view
of polynomial interpolation. We expect that by using the rational functions
studied in [18] and the formalism of hyperderivatives a clean formula can
be given, akin to that of [7, (7.3)], for the effect of these twisting operators
$χ on the u-expansions of Goss. Since we will not use it below, we refrain
from this undertaking here.

3. Eisenstein series with character and Congruences
To simplify the presentation of this final section, we restrict our attention

to prime levels p. We direct the reader to the introduction for the definition
of the Eisenstein series for Γ(p).

As in the classical characteristic zero setting over the integers, for (0, a) ∈
Vp (see (1.5) for the definition of this set) and γ =

( ∗ ∗
∗ dγ

)
∈ Γ0(p), we have

(0, a)γ = (0, adγ) .
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In particular, E(k)
(0,a) ∈ M0

k (Γ1(p)), for each a ∈ (A/pA)×. Thus, for each

character χ ∈ ̂(A/pA)×, we have

E(k)
χ :=

∑
a∈(A/pA)×

χ−1(a)E(k)
(0,a) ∈Mk(p, χ) .

By consideration of the matrices
(
ζ 0
0 ζ

)
∈ Γ0(p) we see that if E(k)

χ 6= 0, we
must have
(3.1) sχ ≡ −k (mod q − 1) .
Our next aim is to show, by means of an A-expansion at the zero cusp,
that for characters satisfying the congruence (3.1) these Eisenstein series
are non-zero.

Let Wp :=
(

0 −1
p 0

)
, and observe that

(3.2) Wp

(
a b
c d

)
W−1

p =
(
d −c/p
−pb a

)
∈ Γ0(p) .

Thus, Wp is in the normalizer of Γ0(p) in GL2(K). For a modular form
f ∈Mm

k (p, χ), we call f |mk [Wp] its Fricke transform.

Lemma 3.1. Suppose f ∈Mm
k (p, χ), then f |mk [Wp] ∈M

m−sχ
k (p, χ−1).

In particular, when E(k)
χ 6= 0, we have E(k)

χ |k[Wp] ∈Mk
k (p, χ−1).

Proof. For γ =
(
a b
c d

)
∈ Γ0(p), we have ad ≡ det γ (mod p) from which it

follows that
χ(a) ≡ χ−1(d)(det γ)sχ = χ−1(γ)(det γ)sχ .

Thus, by the computation of the previous line, for γ =
(
a b
c d

)
∈ Γ0(p),

(f |mk [Wp])|mk
[(
a b
c d

)]
=
(
f |mk

[(
d −c/p
−pb a

)])
|mk [Wp]

= χ−1(γ)(det γ)sχf |mk [Wp] .
Finally, holomorphy only needs to be checked at the cusps represented by
zero and infinity, and this is easy. �

3.1. A-expansions. The path toward A-expansions for Eisenstein series
for Γ(1) was discovered by Goss. For all k ≥ 0, he introduced certain poly-
nomials Gk ∈ K[z], now referred to as Goss polynomials, for the lattice
π̃A; see [11, 10]. We follow the notation of Gekeler, as in [7, §4]. The fun-
damental property of the Goss polynomials is that for all k ≥ 1 one has

1
π̃k

∑
a∈A

1
(z − a)k = Gk(u(z)) ;

see e.g. [7, (3.4)] for further explanation. We shall use that
(3.3) Gk(u(ζz)) = ζ−kGk(u(z)) , ∀ ζ ∈ F×q , k ≥ 1 .
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To follow, we let K(χ) be the finite extension of K obtained by adjoining
the values of χ. The next result demonstrates that a subset of the Goss–
Eisenstein series with character have A-expansions in the sense of Petrov.
In fact, when k = 1, they could be considered as the “reduction of the A-
expansion for some form in Petrov’s special family modulo p; we will make
this precise in Proposition 3.10 below.

Proposition 3.2. If k be a positive integer and χ ∈ ̂(A/pA)× satisfies (3.1),
then

(3.4) − pk

π̃k
(E(k)

χ |k[Wp])(z) =
∑
c∈A+

χ−1(c)Gk(u(cz)) ∈ K(χ)[[u]] .

In particular, for such χ, the functions E(k)
χ and E(k)

χ |k[Wp] are non-zero.

Proof. Let χ and k be as in the statement. We have

(E(k)
χ |k[Wp])(z) =

∑
a∈(A/pA)×

χ−1(a)
(
E

(k)
(0,a)

∣∣∣k [( 0 −1
1 0

) (
p 0
0 1

)])
(z)

=
∑

a∈(A/pA)×
χ−1(a)

(
E

(k)
(a,0)

∣∣∣k [( p 0
0 1

)])
(z)

=
∑

a∈(A/pA)×
χ−1(a)

∑
c,d∈A

1
((a+ cp)pz + pd)k

= 1
pk

∑
c∈A\{0}

χ−1(c)
∑
d∈A

1
(cz + d)k

= − π̃
k

pk

∑
c∈A+

χ−1(c)Gk(u(cz)) .

In the final line we have used that sχ ≡ −k (mod q−1) and (3.3), allowing
us to collapse the sum over c to the monics.

[16, Thm. 3.1] shows that a rigid analytic function with non-vanishing
A-expansion at infinity is non-zero. Hence, we deduce the non-vanishing
of both the forms mentioned above. We conclude that pk

π̃k
E

(k)
χ |k[Wp] is a

non-zero element of Mk
k (p, χ−1) with u-expansion coefficients in K(χ). �

We notice here that the forms E(k)
χ have a type of A-expansion as well.

We shall give further examples with similar expansions in the section on
twisting below.
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Proposition 3.3. Let k be a positive integer. For all χ ∈ ̂(A/pA)× satis-
fying (3.1) we have

(3.5) pk

π̃k
E(k)
χ (z) =

∑
a∈(A/pA)×

χ−1(a)Gk
(
u

(
a

p

))

−
∑
c∈A+

∑
a∈(A/pA)×

χ−1(a)Gk
(
u

(
cz + a

p

))
.

Further, the constant term
∑
a∈(A/pA)× χ

−1(a)Gk(u(ap )) is non-zero and
equals the Goss abelian L-value − pk

π̃k

∑
a∈A+

χ−1(a)
ak

.

Proof. An easy computation gives

(3.6) E
(k)
(0,a)(z) = π̃k

pk

∑
c∈A

Gk

(
u

(
cz + a

p

))
.

Averaging against χ−1 over a ∈ (A/pA)×, we may collapse the sum over
non-zero c to the monics to obtain something non-zero because sχ ≡ −k
(mod q − 1), giving the claimed identity.

Finally, we demonstrate that the constant term of (3.5) is non-zero by
relating it to a special value of Goss’ abelian L-series. This should be com-
pared with [1, Prop. 17]. We have∑

a∈(A/pA)×
χ−1(a)Gk

(
u

(
a

p

))
= 1
π̃k

∑
a∈(A/pA)×

∑
b∈A

χ−1(a)
(a/p + b)k

= − pk

π̃k

∑
a∈A+

χ−1(a)
ak

.

Again, the collapse down to the monics gives something non-zero because
we assume sχ ≡ −k (mod q − 1). �

Remark 3.4. We use (2.4) to rewrite (3.5) as follows:

pk

π̃k
E(k)
χ (z) =

∑
a∈(A/pA)×

χ−1(a)Gk
(
u

(
a

p

))

−
∑
c∈A+

∑
a∈(A/pA)×

χ−1(a)Gk
(

u(cz)
expC(π̃a/p)u(cz) + 1

)
.

From this we obtain further information about the u-expansion coefficients
of the functions pk

π̃k
E

(k)
χ . Indeed, they lie in the extension of K obtained by

adjoining the values of χ and an element of Carlitz p-torsion, e.g. expC(π̃/p).
We shall return to these observations below.
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3.2. Linear independence. Gekeler has computed the number of cusps
for Γ1(m) in [8, Prop. 6.6], and for the case we are interested in where
m = p, a monic irreducible, this number is 2 |p|−1

q−1 . The next result demon-
strates that in each weight k there are exactly as many linearly independent
Eisenstein series with character for Γ0(p) as there are cusps for Γ1(p).
Proposition 3.5. Let k be a positive integer. The set{

E(k)
χ , E(k)

χ |k[Wp] : sχ ≡ −k (mod q − 1)
}

consists of 2 |p|−1
q−1 linearly independent Eisenstein series.

Proof. We have shown that all of the forms given in the statement are non-
zero and the forms in {E(k)

χ : sχ ≡ −k (mod q − 1)} (resp. in {E(k)
χ |k[Wp] :

sχ ≡ −k (mod q− 1)}) respectively lie in distinct χ-eigenspaces for the ac-
tion of Γ0(p). If two forms E(k)

χ1 and E(k)
χ2 |k[Wp] lie in the same χ-eigenspace

we have that E(k)
χ1 is non-zero at the cusp at infinity while E(k)

χ2 |k[Wp] van-
ishes at the infinite cusp; hence, they are linearly independent. �

3.3. Hecke action on Eisenstein series with character. Let us give
an example of the Hecke action on the Eisenstein series of Proposition 3.5.
Proposition 3.6. Let q be a monic irreducible, distinct from the level p,
and a ∈ (A/pA)×.

TqE
(k)
χ = qkχ(q)E(k)

χ , and

Tq(E(k)
χ |k[Wp]) = qkE(k)

χ |k[Wp] .
3.3.1. Remarks.

(1). It follows that the naive Böckle L-function associated to the E(k)
χ via

their eigensystem is a Goss abelian L-function. Of course, one wants such
L-functions to come from cuspidal eigenforms, and we have constructed
such forms above.

(2). In each weight, we obtain |p|−1
q−1 linearly independent Eisenstein se-

ries E(k)
χ |k[Wp] for Γ1(p) all with the same eigensystem outside of the level.

This is essentially forced by the existence of A-expansions for these forms.
This result demonstrates a disconnect here between the A-expansion coeffi-
cients and the Hecke eigenvalues which is in contrast both to the results of
Petrov, e.g. [20, Thm. 2.3], and the classical situation. Note that a similar
observation was already made in [19, Rem. 5.25] for the Eisenstein series
of Example 2.1.4.

(3). The remaining |p|−1
q−1 Eisenstein series E(k)

χ have distinct eigensys-
tems, though they do not possess an A-expansion in the sense of Petrov.
Finally, we note that on the E(k)

χ , the operator Tq agrees with · |k
[( µ ν

p q

)]
followed by multiplication by qk, where

( µ ν
p q

)
∈ Γ0(p).



926 Rudolph Perkins

Proof of Proposition 3.6. We begin the proof with a couple of lemmas. The
following result should be well-known. We include it and its proof here for
completeness.

Lemma 3.7. Let q be a monic irreducible, distinct from p, and a ∈ A,
arbitrary.

∑
|β|<|q|

Gk

(
u

(
c

(
z + β

q

)
+ a

p

))
=
{
qkGk(u(cz + aq

p )) , if (c, q) = 1 ,
0 , if (c, q) = q .

Proof. This follows just as in the proof of [20, Thm. 2.3]. We have
(3.7)∑
|β|<|q|

Gk

(
u

(
c

(
z + β

q

)
+ a

p

))
= qk

π̃k

∑
|β|<|q|

∑
d∈A

1
(cz + aq

p + cβ + dq)k .

As Petrov argues, the map on {|β| < |q|} × A sending (β, d) to cβ + dq
is bijective if (c, q) = 1. Rearranging this absolutely convergent sum gives
the first claim. If (c, q) = q, the vanishing follows from the A-periodicity
of u. �

Corollary 3.8. Let q be a monic irreducible, distinct from the level p, and
a ∈ (A/pA)×.

TqE
(k)
(0,a) = qkE

(k)
(0,qa)

Proof. Using the A-expansion (3.6) and the previous lemma, we have

(TqE(k)
(0,a))(z) = qk

(
E

(k)
(0,a)|k

[( µ ν
p q

) (
q 0
0 1

)]
(z) +

∑
|β|<|q|

E
(k)
(0,a)|k

[(
1 β
0 q

)]
(z)
)

= qkE
(k)
(0,qa)(qz) + π̃k

pk

∑
c:(c,q)=1

qkGk

(
u

(
cz + aq

p

))
= qkE

(k)
(0,qa)(z) . �

Now we may conclude the proof of Proposition 3.6. Immediately from
the previous corollary, we have

TqE
(k)
χ =

∑
a∈(A/pA)×

χ−1(a)TqE(k)
(0,a) = qkχ(q)E(k)

χ .
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With Lem. 3.7 and the A-expansion from (3.4), we obtain

Tq(E(k)
χ |k[Wp]) = qkχ−1(q)

∑
a∈A+

χ−1(a)Gk(u(qaz))

+ qk
∑
a∈A+

(a,q)=1

χ−1(a)Gk(u(az))

= qkE(k)
χ |k[Wp] .

This finishes the proof of Proposition 3.6. �

3.4. Congruences. One should compare the results of this section with
the congruences obtained by Petrov [20] and by C. Vincent [24] and to those
originally found by Gekeler [7]. A similar congruence is shown for Gekeler’s
false Eisenstein series E in [19, Thm. 4.13].

In this final section, we will write, for general k and χ,

Ê(k)
χ := − pk

π̃k
E(k)
χ |k[Wp] ∈Mk

k (p, χ−1) ,

which has an A-expansion in the sense of Petrov given by (3.4).

Proposition 3.9. For all k ≥ 1 and all χ of prime conductor p,

($χÊ
(k)
χ )(z) = g(χ−1)p

k−1

π̃k
(E(k)

χ (pz)− E(k)
χ (z)) .

Proof. Applying $χ, we have $χÊ
(k)
χ ∈Mk(p2, χ) and

(3.8) ($χÊ
(k)
χ )(z) = g(χ−1)

p

∑
a∈A+

(a,p)=1

∑
|β|<|p|

χ−1(β)Gk (u(az + β/p)) .

Upon comparison with (3.5), we obtain the desired identity. �

To follow, we let s be a non-negative integer. For each monic irreducible
p choose a root ζ of p such that χζ agrees with the reduction of the Teich-
müller character, as described in [1, §2.3]. For p such that |p| > 2+s(q−1),
let

χp,s := χ
|p|−2−s(q−1)
ζ .

Finally, recall the definition of Petrov’s special family fs from (1.6).

Proposition 3.10. We have the following congruence of u-expansion co-
efficients:

Ê(1)
χp,s
− fs ∈ (θ − ζ)A[ζ][[u]] .

Proof. From (3.4), we obtain

Ê(1)
χp,s

(z) =
∑
a∈A+

χ
1+s(q−1)
ζ (a)u(az) =

∑
a∈A+

a(ζ)1+s(q−1)u(az) .
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Thus the a-th A-expansion coefficient of the difference

Ê(1)
χ − fs

is a(ζ)1+s(q−1)−a1+s(q−1) which is divisible by ζ−θ. The claim follows after
noticing that u(az) has its u-expansion coefficients in A, for all a ∈ A. �

Corollary 3.11. Let s, p, ζ and χp,s, as in the previous proposition. We
have

g(χ−1
p,s)
π̃

(E(1)
χp,s

(pz)− E(1)
χp,s

(z))−$χp,sfs(z) ∈ (θ − ζ)A[ζ][[u]] .

Proof. This follows immediately from the previous two propositions and
Proposition 2.13. �
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