Morphismes sturmiens et règles de Rauzy
Journal de Théorie des Nombres de Bordeaux, Tome 5 (1993) no. 2, pp. 221-233.

Nous donnons une caractérisation complète de tous les morphismes binaires qui préservent les mots sturmiens et montrons que les mots infinis engendrés par ces morphismes sont rigides.

We give a complete characterization of binary morphisms which preserve Sturmian words and show that infinite words generated by these morphisms are rigid.

@article{JTNB_1993__5_2_221_0,
     author = {Mignosi, Filippo and S\'e\'ebold, Patrice},
     title = {Morphismes sturmiens et r\`egles de {Rauzy}},
     journal = {Journal de Th\'eorie des Nombres de Bordeaux},
     pages = {221--233},
     publisher = {Universit\'e Bordeaux I},
     volume = {5},
     number = {2},
     year = {1993},
     doi = {10.5802/jtnb.91},
     zbl = {0797.11029},
     mrnumber = {1265903},
     language = {fr},
     url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.91/}
}
Filippo Mignosi; Patrice Séébold. Morphismes sturmiens et règles de Rauzy. Journal de Théorie des Nombres de Bordeaux, Tome 5 (1993) no. 2, pp. 221-233. doi : 10.5802/jtnb.91. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.91/

[1] T.C. Brown, A characterization of the quadratic irrationals, Canad. Math. Bull. 34 (1991), 36-41. | MR 1108926 | Zbl 0688.10007

[2] D. Crisp, W. Moran, A. Pollington, P. Shiue, Substitution invariant cutting sequences, Journal de Théorie des Nombres de Bordeaux 5 (1993), 123-137. | Numdam | MR 1251232 | Zbl 0786.11041

[3] E. Coven, G.A. Hedlund, Sequences with minimal block growth, Math. Systems Theory 7 (1973), 138-153. | MR 322838 | Zbl 0256.54028

[4] S. Dulucq, D. Gouyou-Beauchamps, Sur les facteurs des suites de Sturm, Theoret. Comput. Sci. 71 (1990), 381-400. | MR 1057771 | Zbl 0694.68048

[5] A.S. Fraenkel, M. Mushkin, U. Tassa, Determination of [nθ] by its sequence of differences, Canad. Math. Bull. 21 (1978), 441-446. | Zbl 0401.10018

[6] G.A. Hedlund, Sturmian minimal sets, Amer. J. Math 66 (1944), 605-620. | MR 10792 | Zbl 0063.01982

[7] G.A. Hedlund, M. Morse, Symbolic dynamics II - Sturmian trajectories, Amer. J. Math. 62 (1940), 1-42. | JFM 66.0188.03 | MR 745 | Zbl 0022.34003

[8] S. Ito, S. Yasutomi, On continued fractions, substitutions and characteristic sequences, Japan. J. Math. 16 (1990), 287-306. | MR 1091163 | Zbl 0721.11009

[9] M. Kósa, Problems 149-151, "Problems and Solutions", EATCS Bulletin 32 (1987), 331-333.

[10] M. Lothaire, Combinatorics on words, Addison Wesley, 1982. | MR 675953 | Zbl 0514.20045

[11] F. Mignosi, On the number of factors of Sturmian words, Theoret. Comput. Sci. 82 (1991), 71-84. | MR 1112109 | Zbl 0728.68093

[12] G. Rauzy, Mots infinis en arithmétique, in Automata on infinite words, Nivat, Perrin (Eds), Lecture Notes in Computer Science, Springer-Verlag 192 (1984), 165-171. | MR 814741 | Zbl 0613.10044

[13] P. Séébold, Fibonacci morphisms and Sturmian words, Theoret. Comput. Sci. 88 (1991), 365-384. | MR 1131075 | Zbl 0737.68068

[14] C. Series, The geometry of Markoff numbers, Math. Intelligencer 7 (1985), 20-29. | MR 795536 | Zbl 0566.10024

[15] K.B. Stolarsky, Beatty sequences, continued fractions, and certain shift operators, Canad. Math. Bull. 19 (1976), 473-482. | MR 444558 | Zbl 0359.10028

[16] B.A. Venkov, Elementary Number Theory, Wolters-Noordhoff, Groningen, 1970. | MR 265267 | Zbl 0204.37101

Cité par document(s). Sources :