We investigate in various ways the representation of a large natural number as a sum of positive -th powers of numbers from a fixed Beatty sequence. Inter alia, a very general form of the local to global principle is established in additive number theory. Although the proof is very short, it depends on a deep theorem of M. Kneser.
Nous examinons de façons diverses la représentation d’un grand nombre entier comme somme de entiers positifs qui sont tous des puissances -ième de termes d’une suite de Beatty donnée. Entre autres, une forme très générale du principe local-global est établie dans la théorie additive des nombres. La démonstration est courte mais elle utilise un théorème profond de M. Kneser.
William D. Banks 1; Ahmet M. Güloğlu 2; Robert C. Vaughan 3
@article{JTNB_2014__26_1_1_0, author = {William D. Banks and Ahmet M. G\"ulo\u{g}lu and Robert~C. Vaughan}, title = {Waring{\textquoteright}s problem for {Beatty} sequences and a local to global principle}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {1--16}, publisher = {Soci\'et\'e Arithm\'etique de Bordeaux}, volume = {26}, number = {1}, year = {2014}, doi = {10.5802/jtnb.855}, zbl = {1303.11110}, mrnumber = {3232763}, language = {en}, url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.855/} }
TY - JOUR AU - William D. Banks AU - Ahmet M. Güloğlu AU - Robert C. Vaughan TI - Waring’s problem for Beatty sequences and a local to global principle JO - Journal de théorie des nombres de Bordeaux PY - 2014 SP - 1 EP - 16 VL - 26 IS - 1 PB - Société Arithmétique de Bordeaux UR - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.855/ DO - 10.5802/jtnb.855 LA - en ID - JTNB_2014__26_1_1_0 ER -
%0 Journal Article %A William D. Banks %A Ahmet M. Güloğlu %A Robert C. Vaughan %T Waring’s problem for Beatty sequences and a local to global principle %J Journal de théorie des nombres de Bordeaux %D 2014 %P 1-16 %V 26 %N 1 %I Société Arithmétique de Bordeaux %U https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.855/ %R 10.5802/jtnb.855 %G en %F JTNB_2014__26_1_1_0
William D. Banks; Ahmet M. Güloğlu; Robert C. Vaughan. Waring’s problem for Beatty sequences and a local to global principle. Journal de théorie des nombres de Bordeaux, Volume 26 (2014) no. 1, pp. 1-16. doi : 10.5802/jtnb.855. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.855/
[1] K. D. Boklan, The asymptotic formula in Waring’s problem. Mathematika 41 (1994), no. 2, 329–347. | MR | Zbl
[2] H. Davenport, Analytic methods for Diophantine equations and Diophantine inequalities. Second edition. Cambridge Mathematical Library. Cambridge University Press, Cambridge, 2005. | MR | Zbl
[3] H. Halberstam and H.-E. Richert, Sieve methods. London Mathematical Society Monographs, No. 4. Academic Press, London-New York, 1974. | MR | Zbl
[4] H. Halberstam and K. F. Roth, Sequences. Second edition. Springer-Verlag, New York-Berlin, 1983. | MR | Zbl
[5] D. Hilbert, Beweis für die Darstellbarkeit der ganzen Zahlen durch eine feste Anzahl Potenzen (Waringsches Problem). Math. Ann. 67 (1909), no. 3, 281–300. | EuDML | JFM | MR
[6] H. L. Montgomery and R. C. Vaughan, Multiplicative number theory. I. Classical theory. Cambridge Studies in Advanced Mathematics, 97. Cambridge University Press, Cambridge, 2007. | MR | Zbl
[7] E. C. Titchmarsh, The theory of the Riemann zeta-function. Second edition. The Clarendon Press, Oxford University Press, New York, 1986. | Zbl
[8] R. C. Vaughan, On Waring’s problem for cubes. J. Reine Angew. Math. 365 (1986), 122–170. | EuDML | MR | Zbl
[9] R. C. Vaughan, On Waring’s problem for smaller exponents II. Mathematika 33 (1986), no. 1, 6–22. | MR | Zbl
[10] R. C. Vaughan, A new iterative method in Waring’s problem. Acta Math. 162 (1989), no. 1-2, 1–71. | Zbl
[11] R. C. Vaughan, The Hardy-Littlewood method. Second edition. Cambridge Tracts in Mathematics, 125. Cambridge University Press, Cambridge, 1997. | MR | Zbl
[12] R. C. Vaughan, On generating functions in additive number theory, I, in Analytic Number Theory, Essays in Honour of Klaus Roth, 436–448. Cambridge Univ. Press, Cambridge, 2009. | Zbl
[13] R. C. Vaughan and T. D. Wooley, Further improvements in Waring’s problem, III: Eighth powers. Philos. Trans. Roy. Soc. London Ser. A 345 (1993), no. 1676, 385–396. | MR | Zbl
[14] R. C. Vaughan and T. D. Wooley, Further improvements in Waring’s problem, II: Sixth powers. Duke Math. J. 76 (1994), no. 3, 683–710. | MR | Zbl
[15] R. C. Vaughan and T. D. Wooley, Further improvements in Waring’s problem. Acta Math. 174 (1995), no. 2, 147–240. | MR | Zbl
[16] R. C. Vaughan and T. D. Wooley, Further improvements in Waring’s problem, IV: Higher powers. Acta Arith. 94 (2000), no. 3, 203–285. | MR | Zbl
[17] E. Waring, Meditationes algebraicæ. Cambridge, England, 1770.
[18] T. D. Wooley, Vinogradov’s mean value theorem via efficient congruencing. Ann. Math., to appear. | MR | Zbl
Cited by Sources: