Waring’s problem for Beatty sequences and a local to global principle
Journal de Théorie des Nombres de Bordeaux, Volume 26 (2014) no. 1, pp. 1-16.

We investigate in various ways the representation of a large natural number N as a sum of s positive k-th powers of numbers from a fixed Beatty sequence. Inter alia, a very general form of the local to global principle is established in additive number theory. Although the proof is very short, it depends on a deep theorem of M. Kneser.

Nous examinons de façons diverses la représentation d’un grand nombre entier N comme somme de s entiers positifs qui sont tous des puissances k-ième de termes d’une suite de Beatty donnée. Entre autres, une forme très générale du principe local-global est établie dans la théorie additive des nombres. La démonstration est courte mais elle utilise un théorème profond de M. Kneser.

Received:
Accepted:
Published online:
DOI: 10.5802/jtnb.855
Classification: 11P05
William D. Banks 1; Ahmet M. Güloğlu 2; Robert C. Vaughan 3

1 Department of Mathematics University of Missouri Columbia, MO 65211 USA
2 Department of Mathematics Bilkent University 06800 Bilkent, Ankara, TURKEY
3 Department of Mathematics Pennsylvania State University University Park, PA 16802-6401 USA
@article{JTNB_2014__26_1_1_0,
     author = {William D. Banks and Ahmet M. G\"ulo\u{g}lu and Robert~C. Vaughan},
     title = {Waring{\textquoteright}s problem for {Beatty} sequences and a local to global principle},
     journal = {Journal de Th\'eorie des Nombres de Bordeaux},
     pages = {1--16},
     publisher = {Soci\'et\'e Arithm\'etique de Bordeaux},
     volume = {26},
     number = {1},
     year = {2014},
     doi = {10.5802/jtnb.855},
     mrnumber = {3232763},
     zbl = {1303.11110},
     language = {en},
     url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.855/}
}
TY  - JOUR
TI  - Waring’s problem for Beatty sequences and a local to global principle
JO  - Journal de Théorie des Nombres de Bordeaux
PY  - 2014
DA  - 2014///
SP  - 1
EP  - 16
VL  - 26
IS  - 1
PB  - Société Arithmétique de Bordeaux
UR  - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.855/
UR  - https://www.ams.org/mathscinet-getitem?mr=3232763
UR  - https://zbmath.org/?q=an%3A1303.11110
UR  - https://doi.org/10.5802/jtnb.855
DO  - 10.5802/jtnb.855
LA  - en
ID  - JTNB_2014__26_1_1_0
ER  - 
%0 Journal Article
%T Waring’s problem for Beatty sequences and a local to global principle
%J Journal de Théorie des Nombres de Bordeaux
%D 2014
%P 1-16
%V 26
%N 1
%I Société Arithmétique de Bordeaux
%U https://doi.org/10.5802/jtnb.855
%R 10.5802/jtnb.855
%G en
%F JTNB_2014__26_1_1_0
William D. Banks; Ahmet M. Güloğlu; Robert C. Vaughan. Waring’s problem for Beatty sequences and a local to global principle. Journal de Théorie des Nombres de Bordeaux, Volume 26 (2014) no. 1, pp. 1-16. doi : 10.5802/jtnb.855. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.855/

[1] K. D. Boklan, The asymptotic formula in Waring’s problem. Mathematika 41 (1994), no. 2, 329–347. | MR: 1316613 | Zbl: 0815.11050

[2] H. Davenport, Analytic methods for Diophantine equations and Diophantine inequalities. Second edition. Cambridge Mathematical Library. Cambridge University Press, Cambridge, 2005. | MR: 2152164 | Zbl: 1125.11018

[3] H. Halberstam and H.-E. Richert, Sieve methods. London Mathematical Society Monographs, No. 4. Academic Press, London-New York, 1974. | MR: 424730 | Zbl: 0298.10026

[4] H. Halberstam and K. F. Roth, Sequences. Second edition. Springer-Verlag, New York-Berlin, 1983. | MR: 687978 | Zbl: 0498.10001

[5] D. Hilbert, Beweis für die Darstellbarkeit der ganzen Zahlen durch eine feste Anzahl n ter Potenzen (Waringsches Problem). Math. Ann. 67 (1909), no. 3, 281–300. | EuDML: 158407 | JFM: 40.0236.03 | MR: 1511530

[6] H. L. Montgomery and R. C. Vaughan, Multiplicative number theory. I. Classical theory. Cambridge Studies in Advanced Mathematics, 97. Cambridge University Press, Cambridge, 2007. | MR: 2378655 | Zbl: 1142.11001

[7] E. C. Titchmarsh, The theory of the Riemann zeta-function. Second edition. The Clarendon Press, Oxford University Press, New York, 1986. | Zbl: 0601.10026

[8] R. C. Vaughan, On Waring’s problem for cubes. J. Reine Angew. Math. 365 (1986), 122–170. | EuDML: 152808 | MR: 826156 | Zbl: 0574.10046

[9] R. C. Vaughan, On Waring’s problem for smaller exponents II. Mathematika 33 (1986), no. 1, 6–22. | MR: 859494 | Zbl: 0601.10037

[10] R. C. Vaughan, A new iterative method in Waring’s problem. Acta Math. 162 (1989), no. 1-2, 1–71. | Zbl: 0665.10033

[11] R. C. Vaughan, The Hardy-Littlewood method. Second edition. Cambridge Tracts in Mathematics, 125. Cambridge University Press, Cambridge, 1997. | MR: 1435742 | Zbl: 0868.11046

[12] R. C. Vaughan, On generating functions in additive number theory, I, in Analytic Number Theory, Essays in Honour of Klaus Roth, 436–448. Cambridge Univ. Press, Cambridge, 2009. | Zbl: 1221.11174

[13] R. C. Vaughan and T. D. Wooley, Further improvements in Waring’s problem, III: Eighth powers. Philos. Trans. Roy. Soc. London Ser. A 345 (1993), no. 1676, 385–396. | MR: 1253500 | Zbl: 0849.11077

[14] R. C. Vaughan and T. D. Wooley, Further improvements in Waring’s problem, II: Sixth powers. Duke Math. J. 76 (1994), no. 3, 683–710. | MR: 1309326 | Zbl: 0849.11076

[15] R. C. Vaughan and T. D. Wooley, Further improvements in Waring’s problem. Acta Math. 174 (1995), no. 2, 147–240. | MR: 1351319 | Zbl: 0849.11075

[16] R. C. Vaughan and T. D. Wooley, Further improvements in Waring’s problem, IV: Higher powers. Acta Arith. 94 (2000), no. 3, 203–285. | MR: 1776896 | Zbl: 0972.11092

[17] E. Waring, Meditationes algebraicæ. Cambridge, England, 1770.

[18] T. D. Wooley, Vinogradov’s mean value theorem via efficient congruencing. Ann. Math., to appear. | MR: 3039678 | Zbl: 1267.11105

Cited by Sources: