Let be the -th Fibonacci number. Put . We prove that the following inequalities hold for any real :
1) ,
2) ,
3) .
These results are the best possible.
Soit le -ième nombre de Fibonacci. Notons . Nous prouvons les inégalités suivantes pour tous les nombres réels :
1) ,
2) ,
3) .
Ces résultats sont les meilleurs possibles.
@article{JTNB_2013__25_2_499_0, author = {Victoria Zhuravleva}, title = {Diophantine approximations with {Fibonacci} numbers}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {499--520}, publisher = {Soci\'et\'e Arithm\'etique de Bordeaux}, volume = {25}, number = {2}, year = {2013}, doi = {10.5802/jtnb.846}, mrnumber = {3228318}, zbl = {1283.11102}, language = {en}, url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.846/} }
TY - JOUR AU - Victoria Zhuravleva TI - Diophantine approximations with Fibonacci numbers JO - Journal de théorie des nombres de Bordeaux PY - 2013 SP - 499 EP - 520 VL - 25 IS - 2 PB - Société Arithmétique de Bordeaux UR - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.846/ DO - 10.5802/jtnb.846 LA - en ID - JTNB_2013__25_2_499_0 ER -
%0 Journal Article %A Victoria Zhuravleva %T Diophantine approximations with Fibonacci numbers %J Journal de théorie des nombres de Bordeaux %D 2013 %P 499-520 %V 25 %N 2 %I Société Arithmétique de Bordeaux %U https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.846/ %R 10.5802/jtnb.846 %G en %F JTNB_2013__25_2_499_0
Victoria Zhuravleva. Diophantine approximations with Fibonacci numbers. Journal de théorie des nombres de Bordeaux, Volume 25 (2013) no. 2, pp. 499-520. doi : 10.5802/jtnb.846. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.846/
[1] R. K. Akhunzhanov, On the distribution modulo 1 of exponential sequences. Mathematical notes 76:2 (2004), 153–160. | MR | Zbl
[2] A. Dubickas, Arithmetical properties of powers of algebraic numbers. Bull. London Math. Soc. 38 (2006), 70–80. | MR | Zbl
[3] L. Kuipers, H. Niederreiter, Uniform distribution of sequences. John Wiley & Sons, 1974. | MR | Zbl
[4] W. M. Schmidt, Diophantine approximations. Lect. Not. Math. 785, 1980. | Zbl
[5] W. M. Schmidt, On badly approximable numbers and certain games. Trans. Amer. Math. Soc. 623 (1966), 178–199. | MR | Zbl
Cited by Sources: