We prove the existence of a limit distribution of the normalized well-distribution measure (as ) for random binary sequences , by this means solving a problem posed by Alon, Kohayakawa, Mauduit, Moreira and Rödl.
Nous prouvons l’existence d’une distribution limite de la mesure de bonne distribution normalisée (quand ) pour des suites binaires aléatoires . Par ce moyen, nous résolvons un problème posé par Alon, Kohayakawa, Mauduit, Moreira et Rödl.
@article{JTNB_2013__25_2_245_0, author = {Christoph Aistleitner}, title = {On the limit distribution of the well-distribution measure of random binary sequences}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {245--259}, publisher = {Soci\'et\'e Arithm\'etique de Bordeaux}, volume = {25}, number = {2}, year = {2013}, doi = {10.5802/jtnb.834}, mrnumber = {3228306}, zbl = {1282.11094}, language = {en}, url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.834/} }
TY - JOUR AU - Christoph Aistleitner TI - On the limit distribution of the well-distribution measure of random binary sequences JO - Journal de théorie des nombres de Bordeaux PY - 2013 SP - 245 EP - 259 VL - 25 IS - 2 PB - Société Arithmétique de Bordeaux UR - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.834/ DO - 10.5802/jtnb.834 LA - en ID - JTNB_2013__25_2_245_0 ER -
%0 Journal Article %A Christoph Aistleitner %T On the limit distribution of the well-distribution measure of random binary sequences %J Journal de théorie des nombres de Bordeaux %D 2013 %P 245-259 %V 25 %N 2 %I Société Arithmétique de Bordeaux %U https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.834/ %R 10.5802/jtnb.834 %G en %F JTNB_2013__25_2_245_0
Christoph Aistleitner. On the limit distribution of the well-distribution measure of random binary sequences. Journal de théorie des nombres de Bordeaux, Volume 25 (2013) no. 2, pp. 245-259. doi : 10.5802/jtnb.834. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.834/
[1] N. Alon, Y. Kohayakawa, C. Mauduit, C. G. Moreira, and V. Rödl, Measures of pseudorandomness for finite sequences: minimal values. Combin. Probab. Comput. 15(1-2) (2006), 1–29. | MR | Zbl
[2] N. Alon, Y. Kohayakawa, C. Mauduit, C. G. Moreira, and V. Rödl. Measures of pseudorandomness for finite sequences: typical values. Proc. Lond. Math. Soc. (3), 95(3) (2007), 778–812. | MR | Zbl
[3] N. Alon, S. Litsyn, and A. Shpunt. Typical peak sidelobe level of binary sequences. IEEE Trans. Inform. Theory, 56(1) (2010), 545–554. | MR
[4] I. Berkes, W. Philipp, and R. F. Tichy. Empirical processes in probabilistic number theory: the LIL for the discrepancy of . Illinois J. Math., 50(1-4) (2006), 107–145. | MR | Zbl
[5] I. Berkes, W. Philipp, and R. F. Tichy. Pseudorandom numbers and entropy conditions. J. Complexity, 23(4-6) (2007), 516–527. | MR | Zbl
[6] P. Billingsley. /it Convergence of probability measures. Wiley Series in Probability and Statistics: Probability and Statistics. John Wiley & Sons Inc., New York, second edition (1999). | MR | Zbl
[7] J. Cassaigne, C. Mauduit, and A. Sárközy. On finite pseudorandom binary sequences. VII. The measures of pseudorandomness. Acta Arith., 103(2) (2002), 97–118. | EuDML | MR | Zbl
[8] W. Feller. The asymptotic distribution of the range of sums of independent random variables. Ann. Math. Statistics, 22 (1951), 427–432. | MR | Zbl
[9] P. Hubert, C. Mauduit, and A. Sárközy. On pseudorandom binary lattices. Acta Arith., 125(1) (2006), 51–62. | EuDML | MR | Zbl
[10] Y. Kohayakawa, C. Mauduit, C. G. Moreira, and V. Rödl. Measures of pseudorandomness for finite sequences: minimum and typical values. In Proceedings of WORDS’03, volume 27 of TUCS Gen. Publ., (2003), 159–169. Turku Cent. Comput. Sci., Turku. | MR | Zbl
[11] C. Mauduit and A. Sárközy. On finite pseudorandom binary sequences. I. Measure of pseudorandomness, the Legendre symbol. Acta Arith., 82(4) (1997), 365–377. | MR | Zbl
[12] A. W. van der Vaart and J. A. Wellner. Weak convergence and empirical processes. Springer Series in Statistics. Springer-Verlag, New York, (1996). | MR | Zbl
Cited by Sources: