Higher regularizations of zeros of cuspidal automorphic L-functions of GL d
Journal de Théorie des Nombres de Bordeaux, Volume 23 (2011) no. 3, pp. 751-767.

We establish “higher depth” analogues of regularized determinants due to Milnor for zeros of cuspidal automorphic L-functions of GL d over a general number field. This is a generalization of the result of Deninger about the regularized determinant for zeros of the Riemann zeta function.

Nous établissons un analogue de la “plus haute profondeur” des déterminants régularisés due à Milnor pour les zéros des fonctions L automorphes cuspidales de GL d sur un corps de nombres général. C’est une généralisation du résultat de Deninger au sujet du déterminant régularisé pour les zéros de la fonction zêta de Riemann.

Received:
Revised:
Published online:
DOI: 10.5802/jtnb.785
Keywords: cuspidal automorphic L-functions, regularized products (determinants), explicit formulas, grand Riemann hypothesis.
Masato Wakayama 1; Yoshinori Yamasaki 2

1 Faculty of Mathematics Kyushu University Motooka, Nishiku, Fukuoka 819-0395, JAPAN
2 Graduate School of Science and Engineering Ehime University Bunkyo-cho, Matsuyama 790-8577, JAPAN
@article{JTNB_2011__23_3_751_0,
     author = {Masato Wakayama and Yoshinori Yamasaki},
     title = {Higher regularizations of zeros of cuspidal automorphic $L$-functions of ${\rm GL}_d$},
     journal = {Journal de Th\'eorie des Nombres de Bordeaux},
     pages = {751--767},
     publisher = {Soci\'et\'e Arithm\'etique de Bordeaux},
     volume = {23},
     number = {3},
     year = {2011},
     doi = {10.5802/jtnb.785},
     zbl = {1270.11055},
     mrnumber = {2861083},
     language = {en},
     url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.785/}
}
TY  - JOUR
TI  - Higher regularizations of zeros of cuspidal automorphic $L$-functions of ${\rm GL}_d$
JO  - Journal de Théorie des Nombres de Bordeaux
PY  - 2011
DA  - 2011///
SP  - 751
EP  - 767
VL  - 23
IS  - 3
PB  - Société Arithmétique de Bordeaux
UR  - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.785/
UR  - https://zbmath.org/?q=an%3A1270.11055
UR  - https://www.ams.org/mathscinet-getitem?mr=2861083
UR  - https://doi.org/10.5802/jtnb.785
DO  - 10.5802/jtnb.785
LA  - en
ID  - JTNB_2011__23_3_751_0
ER  - 
%0 Journal Article
%T Higher regularizations of zeros of cuspidal automorphic $L$-functions of ${\rm GL}_d$
%J Journal de Théorie des Nombres de Bordeaux
%D 2011
%P 751-767
%V 23
%N 3
%I Société Arithmétique de Bordeaux
%U https://doi.org/10.5802/jtnb.785
%R 10.5802/jtnb.785
%G en
%F JTNB_2011__23_3_751_0
Masato Wakayama; Yoshinori Yamasaki. Higher regularizations of zeros of cuspidal automorphic $L$-functions of ${\rm GL}_d$. Journal de Théorie des Nombres de Bordeaux, Volume 23 (2011) no. 3, pp. 751-767. doi : 10.5802/jtnb.785. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.785/

[1] K. Barner, On A. Weil’s explicit formula. J. Reine Angew. Math. 323 (1981), 139–152. | EuDML: 152338 | MR: 611448 | Zbl: 0446.12013

[2] D. Bump, Automorphic forms and representations. Cambridge Studies in Advanced Mathematics 55. Cambridge University Press, Cambridge, 1997. | MR: 1431508 | Zbl: 0868.11022

[3] C. Deninger, Local L-factors of motives and regularized determinants. Invent. Math. 107 (1992), 135–150. | EuDML: 143961 | MR: 1135468 | Zbl: 0762.14015

[4] R. Godement and H. Jacquet, Zeta functions of simple algebras. Lecture Notes in Mathematics, Vol. 260. Springer-Verlag, Berlin-New York, 1972. | MR: 342495 | Zbl: 0244.12011

[5] T. Ibukiyama and H. Saito, On zeta functions associated to symmetric matrices. I. An explicit form of zeta functions. Amer. J. Math. 117 (1995), 1097–1155. | MR: 1350594 | Zbl: 0846.11028

[6] H. Iwaniec and P. Sarnak, Perspectives on the analytic theory of L-functions. Geom. Funct. Anal. Special Volume (2000) Part II, 705–741. | MR: 1826269 | Zbl: 0996.11036

[7] N. Kurokawa, H. Ochiai and M. Wakayama, Milnor’s multiple gamma functions. J. Ramanujan Math. Soc. 21 (2006), 153–167. | MR: 2244542 | Zbl: 1189.11043

[8] N. Kurokawa and M. Wakayama, Analyticity of polylogarithmic Euler products. Rend. Circ. Mat. di Palermo. 200 (2003), 382–388. | MR: 2029551 | Zbl: 1097.11046

[9] N. Kurokawa, M. Wakayama and Y. Yamasaki, Milnor-Selberg zeta functions and zeta regularizations. Preprint, 2011. arXiv:1011.3093. | MR: 3004020

[10] W. Luo, Z. Rudnick and P. Sarnak, On the generalized Ramanujan conjecture for GL (n). In Automorphic forms, automorphic representations, and arithmetic, Proc. Sympos. Pure Math. 66, Part 2 (1999), 301–310. | MR: 1703764 | Zbl: 0965.11023

[11] J. Milnor, On polylogarithms, Hurwitz zeta functions, and the Kubert identities. Enseignement Mathématique. 29 (1983), 281–322. | MR: 719313 | Zbl: 0557.10031

[12] P. Michel, Répartition des zéros des fonctions L et matrices aléatoires. Seminaire Bourbaki, Vol. 2000/2001, Astérisque. 282 (2002), Exp. No. 887, viii, 211–248. | Numdam | MR: 1975180 | Zbl: 1075.11056

[13] M. Schröter and C. Soulé, On a result of Deninger concerning Riemann’s zeta function. In Motives, Proc. Sympos. Pure Math. 55, Part 1 (1994), 745–747. | MR: 1265548 | Zbl: 0809.11045

[14] J. Steuding, Value-distribution of L-functions. Lecture Notes in Mathematics, Vol. 1877. Springer, Berlin, 2007. | MR: 2330696 | Zbl: 1130.11044

[15] Y. Yamasaki, Factorization formulas for higher depth determinants of the Laplacian on the n-sphere. Preprint, 2010. arXiv:1011.3095.

Cited by Sources: