The Mordell–Lang question for endomorphisms of semiabelian varieties
Journal de Théorie des Nombres de Bordeaux, Tome 23 (2011) no. 3, pp. 645-666.

La conjecture de Mordell-Lang décrit l’intersection d’un sous-groupe de type fini avec une variété fermée d’une variété semi-abélienne. De façon équivalente, cette conjecture décrit l’intersection des sous-variétés fermées avec l’ensemble des images de l’origine sous un semigroupe de translations de type fini. Nous étudions la question analogue dans laquelle les translations sont remplacées par les endomorphismes d’un groupe algébrique (et l’origine est remplacée par un autre point). Nous montrons qui la conclusion de la conjecture de Mordell-Lang reste vraie dans cette situation si, ou bien, (1) la variété semi-abélienne est simple, ou, (2) la variété semi-abélienne est A 2 , où A est une variété semi-abéliennne de dimension 1, ou (3) la sous-variété est une sous-variété semi-abéliennne de dimension 1, ou enfin, (4) la matrice jacobienne à l’origine de chaque endomorphisme est diagonalisable. Nous donnons aussi des exemples qui montrent que la conclusion est fausse si nous affaiblissons n’importe laquelle de ces hypothéses.

The Mordell–Lang conjecture describes the intersection of a finitely generated subgroup with a closed subvariety of a semiabelian variety. Equivalently, this conjecture describes the intersection of closed subvarieties with the set of images of the origin under a finitely generated semigroup of translations. We study the analogous question in which the translations are replaced by algebraic group endomorphisms (and the origin is replaced by another point). We show that the conclusion of the Mordell–Lang conjecture remains true in this setting if either (1) the semiabelian variety is simple, (2) the semiabelian variety is A 2 , where A is a one-dimensional semiabelian variety, (3) the subvariety is a connected one-dimensional algebraic subgroup, or (4) each endomorphism has diagonalizable Jacobian at the origin. We also give examples showing that the conclusion fails if we make slight modifications to any of these hypotheses.

Reçu le :
Publié le :
DOI : https://doi.org/10.5802/jtnb.781
Classification : 14L10,  37P55,  11G20
Mots clés : p-adic exponential, Mordell-Lang conjecture, semiabelian varieties
@article{JTNB_2011__23_3_645_0,
     author = {Dragos Ghioca and Thomas Tucker and Michael E. Zieve},
     title = {The {Mordell{\textendash}Lang} question for endomorphisms of semiabelian varieties},
     journal = {Journal de Th\'eorie des Nombres de Bordeaux},
     pages = {645--666},
     publisher = {Soci\'et\'e Arithm\'etique de Bordeaux},
     volume = {23},
     number = {3},
     year = {2011},
     doi = {10.5802/jtnb.781},
     zbl = {1256.14046},
     mrnumber = {2861079},
     language = {en},
     url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.781/}
}
Dragos Ghioca; Thomas Tucker; Michael E. Zieve. The Mordell–Lang question for endomorphisms of semiabelian varieties. Journal de Théorie des Nombres de Bordeaux, Tome 23 (2011) no. 3, pp. 645-666. doi : 10.5802/jtnb.781. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.781/

[1] J. P. Bell, A generalised Skolem–Mahler–Lech theorem for affine varieties. J. London Math. Soc. (2) 73 (2006), 367–379; corrig. J. London Math. Soc. (2) 78 (2008), 267–272. arXiv: math/0501309. | MR 2225492 | Zbl 1147.11020

[2] J.  Bell, D.  Ghioca, and T. J.  Tucker, The dynamical Mordell–Lang problem for ètale maps. Amer. J. Math. 132 (2010), 1655–1675. | MR 2766180 | Zbl pre05834745

[3] R. L. Benedetto, D. Ghioca, T. J. Tucker and P. Kurlberg (with an Appendix by U. Zannier), A case of the dynamical Mordell–Lang conjecture. To appear in Math. Ann., arXiv: 0712.2344.

[4] N. Bourbaki, Lie Groups and Lie Algebras. Chapters 1–3, Springer–Verlag, Berlin, 1998. | MR 1728312 | Zbl 0672.22001

[5] L. Denis, Géométrie et suites récurrentes. Bull. Soc. Math. France 122 (1994), 13–27. | Numdam | MR 1259107 | Zbl 0795.14008

[6] G. Faltings, The general case of S. Lang’s theorem. In Barsotti symposium in Algebraic Geometry 175–182, Academic Press, San Diego, 1994. | MR 1307396 | Zbl 0823.14009

[7] D. Ghioca and T. J. Tucker, Periodic points, linearizing maps, and the dynamical Mordell–Lang problem. J. Number Theory, 129 (2009), 1392–1403. | MR 2521481 | Zbl 1186.14047

[8] D. Ghioca, T. J. Tucker, and M. E. Zieve, Intersections of polynomial orbits, and a dynamical Mordell–Lang theorem. Invent. Math. 171 (2008), 463–483. | MR 2367026 | Zbl 1191.14027

[9] D. Ghioca, T. J. Tucker, and M. E. Zieve, Linear relations between polynomial orbits. To appear in Duke Mat. J.

[10] S. Iitaka, Logarithmic forms of algebraic varieties. J. Fac. Sci. Univ. Tokyo Sect. IA Math. 23 (1976), 525–544. | MR 429884 | Zbl 0342.14017

[11] , On logarithmic Kodaira dimension of algebraic varieties. In Complex Analysis and Algebraic Geometry Iwanami Shoten, Tokyo (1977), 175–189. | MR 569688

[12] S. Lang, Integral points on curves. Publ. Math. IHES 6 (1960), 27–43. | Numdam | MR 130219 | Zbl 0112.13402

[13] C. Lech, A note on recurring series. Ark. Mat. 2 (1953), 417–421. | MR 56634 | Zbl 0051.27801

[14] K. Mahler, Eine arithmetische Eigenshaft der Taylor-Koeffizienten. rationaler Funktionen Proc. Kon. Ned. Akad. Wetensch. 38 (1935), 50–60.

[15] M. McQuillan, Division points on semi-abelian varieties. Invent. Math. 120 (1995), 143–159. | MR 1323985 | Zbl 0848.14022

[16] J. Milne, Abelian varieties. available at www.jmilne.org/math/index.html.

[17] T. Skolem, Ein Verfahren zur Behandlung gewisser exponentialer Gleichungen und diophantischer Gleichungen. In Comptes rendus du 8e congrès des mathématiciens scandinaves (1935), 163–188. | Zbl 0011.39201

[18] P. Vojta, Integral points on subvarieties of semiabelian varieties. I. Invent. Math. 126 (1996), 133–181. | MR 1408559 | Zbl 1011.11040