@article{JTNB_1992__4_2_187_0, author = {F. Halter-Koch and W{\l}adys{\l}aw Narkiewicz}, title = {Polynomial mappings defined by forms with a common factor}, journal = {Journal de Th\'eorie des Nombres de Bordeaux}, pages = {187--198}, publisher = {Universit\'e Bordeaux I}, volume = {4}, number = {2}, year = {1992}, doi = {10.5802/jtnb.71}, zbl = {0778.12002}, language = {en}, url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.71/} }
TY - JOUR TI - Polynomial mappings defined by forms with a common factor JO - Journal de Théorie des Nombres de Bordeaux PY - 1992 DA - 1992/// SP - 187 EP - 198 VL - 4 IS - 2 PB - Université Bordeaux I UR - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.71/ UR - https://zbmath.org/?q=an%3A0778.12002 UR - https://doi.org/10.5802/jtnb.71 DO - 10.5802/jtnb.71 LA - en ID - JTNB_1992__4_2_187_0 ER -
F. Halter-Koch; Władysław Narkiewicz. Polynomial mappings defined by forms with a common factor. Journal de Théorie des Nombres de Bordeaux, Volume 4 (1992) no. 2, pp. 187-198. doi : 10.5802/jtnb.71. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.71/
[1] Finiteness properties of polynomial mappings, to appear. | MR: 1237098
, ,[2] Fundamentals of Diophantine Geometry, Springer 1983. | MR: 715605 | Zbl: 0528.14013
,[3] Introduction to algebraic geometry, Interscience Publ. 1958. | MR: 100591 | Zbl: 0095.15301
,[4] Invariant sets of morphisms in projective and affine number spaces, J. Algebra 20 (1972), 419-434. | MR: 302602 | Zbl: 0245.12003
,[5] Sur les transformations polynomiales et rationnelles, Sém. Th. Nomb. Bordeaux exp. n° 29, 1971-1972. | MR: 392947 | Zbl: 0273.12101
,[6] Sur une conjecture de W. Narkiewicz, C. R. Acad. Sc. Paris 274 (1972), 1836-1838. | MR: 314841 | Zbl: 0249.12103
,[7] On transformations by polynomials in two variables, II, Coll. Math. 13 (1964), 101-106. | MR: 173672 | Zbl: 0132.00803
,[8] Lectures on the Mordell-Weil-Theorem, Aspects of Mathematics, Braun schweig 1989. | Zbl: 0676.14005
,[9] Algebra, 2. Teil, Springer 1967. | Zbl: 0137.25403
,Cited by Sources: