Rational approximations to 2 3 and other algebraic numbers revisited
Journal de Théorie des Nombres de Bordeaux, Volume 19 (2007) no. 1, pp. 263-288.

In this paper, we establish improved effective irrationality measures for certain numbers of the form n 3, using approximations obtained from hypergeometric functions. These results are very close to the best possible using this method. We are able to obtain these results by determining very precise arithmetic information about the denominators of the coefficients of these hypergeometric functions.

Improved bounds for the Chebyshev functions in arithmetic progressions θ(k,l;x) and ψ(k,l;x) for k=1,3,4,6 are also presented.

Dans cet article, nous améliorons des mesures effectives d’irrationalité pour certains nombres de la forme n 3 en utilisant des approximations obtenues à partir de fonctions hypergéométriques. Ces résultats sont très proche du mieux que peut donner cette méthode. Nous obtenons ces résultats grâce à des informations arithmétiques très précises sur les dénominateurs des coefficients de ces fonctions hypergéométriques.

Des améliorations de bornes pour les fonctions de Chebyshev θ(k,l;x)= p, prime ,px plmodk; logp. et ψ(k,l;x)= nx nlmodk; Λ(n) (k=1,3,4,6) sont aussi présentés.

Received:
Published online:
DOI: 10.5802/jtnb.586
Paul M. Voutier 1

1 London, UK
@article{JTNB_2007__19_1_263_0,
     author = {Paul M. Voutier},
     title = {Rational approximations to ${\@root 3 \of {2}}$ and other algebraic numbers revisited},
     journal = {Journal de Th\'eorie des Nombres de Bordeaux},
     pages = {263--288},
     publisher = {Universit\'e Bordeaux 1},
     volume = {19},
     number = {1},
     year = {2007},
     doi = {10.5802/jtnb.586},
     zbl = {1120.11027},
     mrnumber = {2332066},
     language = {en},
     url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.586/}
}
TY  - JOUR
TI  - Rational approximations to ${\@root 3 \of {2}}$ and other algebraic numbers revisited
JO  - Journal de Théorie des Nombres de Bordeaux
PY  - 2007
DA  - 2007///
SP  - 263
EP  - 288
VL  - 19
IS  - 1
PB  - Université Bordeaux 1
UR  - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.586/
UR  - https://zbmath.org/?q=an%3A1120.11027
UR  - https://www.ams.org/mathscinet-getitem?mr=2332066
UR  - https://doi.org/10.5802/jtnb.586
DO  - 10.5802/jtnb.586
LA  - en
ID  - JTNB_2007__19_1_263_0
ER  - 
%0 Journal Article
%T Rational approximations to ${\@root 3 \of {2}}$ and other algebraic numbers revisited
%J Journal de Théorie des Nombres de Bordeaux
%D 2007
%P 263-288
%V 19
%N 1
%I Université Bordeaux 1
%U https://doi.org/10.5802/jtnb.586
%R 10.5802/jtnb.586
%G en
%F JTNB_2007__19_1_263_0
Paul M. Voutier. Rational approximations to ${\@root 3 \of {2}}$ and other algebraic numbers revisited. Journal de Théorie des Nombres de Bordeaux, Volume 19 (2007) no. 1, pp. 263-288. doi : 10.5802/jtnb.586. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.586/

[1] A. Baker, Rational approximations to certain algebraic numbers. Proc. London. Math. Soc. (3) 14 (1964), 385–398. | MR: 161825 | Zbl: 0131.29102

[2] A. Baker, Rational approximations to 2 3 and other algebraic numbers. Quart. J. Math. Oxford 15 (1964), 375–383. | MR: 171750 | Zbl: 0222.10036

[3] M. Bennett, Explicit lower bounds for rational approximation to algebraic numbers. Proc. London Math. Soc. 75 (1997), 63–78. | MR: 1444313 | Zbl: 0879.11038

[4] Jianhua Chen, P. Voutier, Complete solution of the diophantine equation X 2 +1=dY 4 and a related family of quartic Thue equations. J. Number Theory 62 (1997), 71–99. | MR: 1430002 | Zbl: 0869.11025

[5] G. V. Chudnovsky, The method of Thue-Siegel. Annals of Math. 117 (1983), 325–383. | MR: 690849 | Zbl: 0518.10038

[6] D. Easton, Effective irrationality measures for certain algebraic numbers. Math. Comp. 46 (1986), 613–622. | MR: 829632 | Zbl: 0586.10019

[7] N. I. Fel’dman, Yu. V. Nesterenko, Number Theory IV: Transcendental Numbers. Encyclopaedia of Mathematical Sciences 44, Springer, 1998. | Zbl: 0885.11004

[8] A. Heimonen, Effective irrationality measures for some values of Gauss hypergeometric function. Department of Mathematics, University of Oulu preprint, March 1996.

[9] A. N. Korobov, Continued fractions and Diophantine approximation. Candidate’s Dissertation, Moscow State University, 1990.

[10] S. Lang, H. Trotter, Continued-fractions for some algebraic numbers. J. reine angew. Math. 255 (1972), 112–134. | MR: 306131 | Zbl: 0237.10022

[11] G. Lettl, A. Pethő, P. M. Voutier, Simple Familiies of Thue Inequalities. Trans. Amer. Math. Soc. 351 (1999), 1871–1894. | MR: 1487624 | Zbl: 0920.11041

[12] E. M. Nikishin, Arithmetic properties of the Markov function for the Jacobi weight. Anal. Math. 8 (1982), 39–46. | MR: 662702 | Zbl: 0495.10022

[13] O. Ramaré, R. Rumely, Primes in arithmetic progressions. Math. Comp. 65 (1996), 397–425. | MR: 1320898 | Zbl: 0856.11042

[14] M. Rubinstein,

[15] A. Togbe, P. M. Voutier, P. G. Walsh, Solving a family of Thue equations with an application to the equation x 2 -Dy 4 =1. Acta. Arith. 120 (2005), 39–58. | MR: 2189717 | Zbl: 05001262

Cited by Sources: