Given an odd prime and a representation of the absolute Galois group of a number field onto with cyclotomic determinant, the moduli space of elliptic curves defined over with -torsion giving rise to consists of two twists of the modular curve . We make here explicit the only genus-zero cases and , which are also the only symmetric cases: for or , respectively. This is done by studying the corresponding twisted Galois actions on the function field of the curve, for which a description in terms of modular units is given. As a consequence of this twisting process, we recover an equivalence between the ellipticity of and its principality, that is, the existence in its fixed field of an element of degree over such that and have both trace zero over .
Etant donnés un nombre premier impair et une représentation du groupe de Galois absolu d’un corps de nombres sur avec déterminant cyclotomique, l’espace des modules des courbes elliptiques définies sur et dont la -torsion donne lieu à est composé de deux tordues galoisiennes de la courbe modulaire . On explicite ici les seuls cas de genre zéro, et , qui sont aussi les seuls cas symétriques : pour ou , respectivement. Dans ce but, on étudie les actions galoisiennes correspondantes aux deux tordues sur le corps de fonctions de la courbe, duquel on donne une description au moyen d’unités modulaires. Comme conséquence, on retrouve une équivalence entre l’ellipticité de et sa pincipalité, c’est-à-dire l’existence dans son corps fixe d’un élément de degré sur tel que and ont tous les deux trace zéro sur .
@article{JTNB_2007__19_1_141_0, author = {Julio Fern\'andez and Joan-C. Lario}, title = {On elliptic {Galois} representations and genus-zero modular units}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {141--164}, publisher = {Universit\'e Bordeaux 1}, volume = {19}, number = {1}, year = {2007}, doi = {10.5802/jtnb.578}, mrnumber = {2332058}, language = {en}, url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.578/} }
TY - JOUR AU - Julio Fernández AU - Joan-C. Lario TI - On elliptic Galois representations and genus-zero modular units JO - Journal de théorie des nombres de Bordeaux PY - 2007 SP - 141 EP - 164 VL - 19 IS - 1 PB - Université Bordeaux 1 UR - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.578/ DO - 10.5802/jtnb.578 LA - en ID - JTNB_2007__19_1_141_0 ER -
%0 Journal Article %A Julio Fernández %A Joan-C. Lario %T On elliptic Galois representations and genus-zero modular units %J Journal de théorie des nombres de Bordeaux %D 2007 %P 141-164 %V 19 %N 1 %I Université Bordeaux 1 %U https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.578/ %R 10.5802/jtnb.578 %G en %F JTNB_2007__19_1_141_0
Julio Fernández; Joan-C. Lario. On elliptic Galois representations and genus-zero modular units. Journal de théorie des nombres de Bordeaux, Volume 19 (2007) no. 1, pp. 141-164. doi : 10.5802/jtnb.578. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.578/
[1] R.W. Carter, Simple groups of Lie type. Pure and Applied Mathematics 28. John Wiley & Sons, London-New York-Sydney, 1972. | MR | Zbl
[2] J. Fernández, Elliptic realization of Galois representations. PhD thesis, Universitat Politècnica de Catalunya, 2003.
[3] J. Fernández, J-C. Lario, A. Rio, On twists of the modular curves . Bull. London Math. Soc. 37 (2005), 342–350. | MR | Zbl
[4] J. González, Equations of hyperelliptic modular curves. Ann. Inst. Fourier (Grenoble) 41 (1991), 779–795. | Numdam | MR | Zbl
[5] D. S. Kubert, S. Lang, Modular units. Grundlehren der Mathematischen Wissenschaften 244. Springer-Verlag, New York, 1981. | MR | Zbl
[6] J-C. Lario, A. Rio, An octahedral-elliptic type equality in . C. R. Acad. Sci. Paris Sér. I Math. 321 (1995), 39–44. | MR | Zbl
[7] G. Ligozat, Courbes modulaires de niveau . Modular functions of one variable V, 149–237. Lecture Notes in Math. 601, Springer, Berlin, 1977. | MR | Zbl
[8] B. Mazur, Rational points on modular curves. Modular functions of one variable V, 107–148. Lecture Notes in Math. 601, Springer, Berlin, 1977. | MR | Zbl
[9] B. Mazur, Open problems regarding rational points on curves and varieties. Galois representations in arithmetic algebraic geometry (Durham, 1996), 239–265. London Math. Soc. Lecture Note Ser. 254. Cambridge Univ. Press, 1998. | MR | Zbl
[10] D. E. Rohrlich, Modular curves, Hecke correspondence, and -functions. Modular forms and Fermat’s last theorem (Boston, 1995), 41–100. Springer, New York, 1997. | Zbl
[11] K. Y. Shih, On the construction of Galois extensions of function fields and number fields. Math. Ann. 207 (1994), 99–120. | MR | Zbl
[12] G. Shimura, Introduction to the arithmetic theory of automorphic functions. Publications of the Mathematical Society of Japan 11. Iwanami Shoten Publishers, Tokyo, 1971. | MR | Zbl
Cited by Sources: