Let be a -adic field. We give an explicit characterization of the abelian extensions of of degree by relating the coefficients of the generating polynomials of extensions of degree to the exponents of generators of the norm group . This is applied in an algorithm for the construction of class fields of degree , which yields an algorithm for the computation of class fields in general.
Soit un corps -adique. Nous donnons une caractérisation explicite des extensions abéliennes de de degré en reliant les coefficients des polynômes engendrant les extensions de degré aux exposants des générateurs du groupe des normes . Ceci est appliqué à un algorithme de construction des corps de classes de degré , ce qui conduit à un algorithme de calcul des corps de classes en général.
@article{JTNB_2006__18_3_627_0, author = {Sebastian Pauli}, title = {Constructing class fields over local fields}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {627--652}, publisher = {Universit\'e Bordeaux 1}, volume = {18}, number = {3}, year = {2006}, doi = {10.5802/jtnb.563}, mrnumber = {2330432}, zbl = {1136.11072}, language = {en}, url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.563/} }
TY - JOUR AU - Sebastian Pauli TI - Constructing class fields over local fields JO - Journal de théorie des nombres de Bordeaux PY - 2006 SP - 627 EP - 652 VL - 18 IS - 3 PB - Université Bordeaux 1 UR - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.563/ DO - 10.5802/jtnb.563 LA - en ID - JTNB_2006__18_3_627_0 ER -
Sebastian Pauli. Constructing class fields over local fields. Journal de théorie des nombres de Bordeaux, Volume 18 (2006) no. 3, pp. 627-652. doi : 10.5802/jtnb.563. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.563/
[Ama71] S. Amano, Eisenstein equations of degree p in a -adic field. J. Fac. Sci. Univ. Tokyo Sect. IA Math. 18 (1971), 1–21. | MR | Zbl
[BC95] W. Bosma, J.J. Cannon, Handbook of Magma functions. School of Mathematics, University of Sydney, Sydney, 1995.
[Coh99] H. Cohen, Advanced topics in computational number theory. Springer Verlag, New York, 1999. | MR | Zbl
[Fie99] C. Fieker, Computing class fields via the Artin map. Math. Comp. 70 (2001), 1293–1303. | MR | Zbl
[FV93] I. B. Fesenko, S. V. Vostokov, Local fields and their extensions. Translations of Mathematical Monographs, vol. 121, American Mathematical Society, 1993. | MR | Zbl
[Has80] H. Hasse, Number Theory. Springer Verlag, Berlin, 1980. | MR | Zbl
[HPP03] F. Hess, S. Pauli, M. E. Pohst, Computing the multiplicative group of residue class rings. Math. Comp. 72 (2003), no. 243, 1531–1548. | MR | Zbl
[Iwa86] K. Iwasawa, Local class field theory. Oxford University Press, New York, 1986. | MR | Zbl
[Kra66] M. Krasner, Nombre des extensions d’un degré donné d’un corps -adique Les Tendances Géométriques en Algèbre et Théorie des Nombres, Paris, 1966, 143–169. | Zbl
[MW56] R. E. MacKenzie, G. Whaples, Artin-Schreier equations in characteristic zero. Amer. J. Math. 78 (1956), 473–485. MR 19,834c | MR | Zbl
[Pan95] P. Panayi, Computation of Leopoldt’s p-adic regulator. Dissertation, University of East Anglia, 1995.
[PR01] S. Pauli, X.-F. Roblot, On the computation of all extensions of a p-adic field of a given degree. Math. Comp. 70 (2001), 1641–1659. | MR | Zbl
[Ser63] J.-P. Serre, Corps locaux. Hermann, Paris, 1963. | MR | Zbl
[Yam58] K. Yamamoto, Isomorphism theorem in the local class field theory. Mem. Fac. Sci. Kyushu Ser. A 12 (1958), 67–103. | MR | Zbl
Cited by Sources: