Gross’ conjecture for extensions ramified over four points of 1
Journal de Théorie des Nombres de Bordeaux, Tome 18 (2006) no. 1, pp. 183-201.

Dans le papier ci-après, avec une hypothése modérée, nous prouvons une conjecture de Gross pour l’élément Stickelberger de l’extension abelienne maximale sur le corps des fonctions rationnelles non ramifiée en dehors d’un ensemble des quatre places de degré 1.

In this paper, under a mild hypothesis, we prove a conjecture of Gross for the Stickelberger element of the maximal abelian extension over the rational function field unramified outside a set of four degree-one places.

Reçu le :
Publié le :
DOI : https://doi.org/10.5802/jtnb.539
@article{JTNB_2006__18_1_183_0,
     author = {Po-Yi Huang},
     title = {Gross{\textquoteright} conjecture for extensions ramified over four points of $\mathbb{P}^1$},
     journal = {Journal de Th\'eorie des Nombres de Bordeaux},
     pages = {183--201},
     publisher = {Universit\'e Bordeaux 1},
     volume = {18},
     number = {1},
     year = {2006},
     doi = {10.5802/jtnb.539},
     mrnumber = {2245881},
     zbl = {1126.11066},
     language = {en},
     url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.539/}
}
Po-Yi Huang. Gross’ conjecture for extensions ramified over four points of $\mathbb{P}^1$. Journal de Théorie des Nombres de Bordeaux, Tome 18 (2006) no. 1, pp. 183-201. doi : 10.5802/jtnb.539. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.539/

[1] Noboru Aoki, Gross’ Conjecture on the Special Values of Abelian L-Functions at s=0. Commentarii Mathematici Universitatis Sancti Pauli 40 (1991), 101–124. | MR 1104783 | Zbl 0742.11055

[2] Noboru Aoki, On Tate’s refinement for a conjecture of Gross and its generalization. J. Théor. Nombres Bordeaux 16 (2004), 457–486. | Numdam | MR 2144953 | Zbl 1071.11064

[3] David Burns, Congruences between derivatives of abelian L-functions at s=0. Preprint, 2005.

[4] Henri Darmon, Thaine’s method for circular units and a conjecture of Gross. Canadian J. Math. 47 (1995), 302–317. | MR 1335080 | Zbl 0844.11071

[5] Benedict H. Gross, On the values of abelian L-functions at s=0. J. Fac. Sci. Univ. Tokyo Sect. IA, Math. 35 (1988), 177–197. | MR 931448 | Zbl 0681.12005

[6] David R. Hayes, The refined p-adic abelian Stark conjecture in function fields. Invent. Math. 94 (1988), 505–527. | MR 969242 | Zbl 0666.12009

[7] Po-Yi Huang, Stickelberger elements over Rational Function Fields. In preparation.

[8] Joongul Lee, On Gross’ Refined Class Number Formula for Elementary Abelian Extensions. Journal of Mathematical Sciences, University of Tokyo 4 (1997), 373–383. | MR 1466351 | Zbl 0903.11027

[9] Joongul Lee, Stickelberger elements for cyclic extensions and the order of vanishing of abelian L-functions at s=0. Compositio Math. 138, no.2 (2003), 157–163. | MR 2018824 | Zbl 1057.11053

[10] Joongul Lee On the refined class number formula for global function fields. Math. Res. Lett. 11 (2004), 283–289. | MR 2106227 | Zbl 02152361

[11] Michael Reid, Gross’ Conjecture for extensions ramified over three points on 1 . Journal of Mathematical Sciences, University of Tokyo 10 no. 1 (2003), 119–138. | MR 1963800 | Zbl 1060.11079

[12] Ki-Seng Tan, On the special values of abelian L-functions. J. Math. Sci. Univ. Tokyo 1 (1994), 305–319. | MR 1317462 | Zbl 0820.11069

[13] M. Yamagishi, On a conjecture of Gross on special values of L-functions. Math. Z. 201 (1989), 391–400. | MR 999736 | Zbl 0689.12002