Binary quadratic forms and Eichler orders
Journal de Théorie des Nombres de Bordeaux, Volume 17 (2005) no. 1, pp. 13-23.

For any Eichler order 𝒪(D,N) of level N in an indefinite quaternion algebra of discriminant D there is a Fuchsian group Γ(D,N)SL(2,) and a Shimura curve X(D,N). We associate to 𝒪(D,N) a set (𝒪(D,N)) of binary quadratic forms which have semi-integer quadratic coefficients, and we develop a classification theory, with respect to Γ(D,N), for primitive forms contained in (𝒪(D,N)). In particular, the classification theory of primitive integral binary quadratic forms by SL(2,) is recovered. Explicit fundamental domains for Γ(D,N) allow the characterization of the Γ(D,N)-reduced forms.

Pour tout ordre d’Eichler 𝒪(D,N) de niveau N dans une algèbre de quaternions indéfinie de discriminant D, il existe un groupe Fuchsien Γ(D,N)SL(2,) et une courbe de Shimura X(D,N). Nous associons à 𝒪(D,N) un ensemble (𝒪(D,N)) de formes quadratiques binaires ayant des coefficients semi-entiers quadratiques et developpons une classification des formes quadratiques primitives de (𝒪(D,N)) pour rapport à Γ(D,N). En particulier nous retrouvons la classification des formes quadratiques primitives et entières de SL(2,). Un domaine fondamental explicite pour Γ(D,N) permet de caractériser les Γ(D,N) formes réduites.

Published online:
DOI: 10.5802/jtnb.473
Montserrat Alsina 1

1 Dept. Matemàtica Aplicada III EUPM Av. Bases de Manresa 61-73, Manresa-08240, Catalunya, Spain
@article{JTNB_2005__17_1_13_0,
     author = {Montserrat Alsina},
     title = {Binary quadratic forms and {Eichler} orders},
     journal = {Journal de Th\'eorie des Nombres de Bordeaux},
     pages = {13--23},
     publisher = {Universit\'e Bordeaux 1},
     volume = {17},
     number = {1},
     year = {2005},
     doi = {10.5802/jtnb.473},
     zbl = {1079.11022},
     mrnumber = {2152207},
     language = {en},
     url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.473/}
}
TY  - JOUR
TI  - Binary quadratic forms and Eichler orders
JO  - Journal de Théorie des Nombres de Bordeaux
PY  - 2005
DA  - 2005///
SP  - 13
EP  - 23
VL  - 17
IS  - 1
PB  - Université Bordeaux 1
UR  - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.473/
UR  - https://zbmath.org/?q=an%3A1079.11022
UR  - https://www.ams.org/mathscinet-getitem?mr=2152207
UR  - https://doi.org/10.5802/jtnb.473
DO  - 10.5802/jtnb.473
LA  - en
ID  - JTNB_2005__17_1_13_0
ER  - 
%0 Journal Article
%T Binary quadratic forms and Eichler orders
%J Journal de Théorie des Nombres de Bordeaux
%D 2005
%P 13-23
%V 17
%N 1
%I Université Bordeaux 1
%U https://doi.org/10.5802/jtnb.473
%R 10.5802/jtnb.473
%G en
%F JTNB_2005__17_1_13_0
Montserrat Alsina. Binary quadratic forms and Eichler orders. Journal de Théorie des Nombres de Bordeaux, Volume 17 (2005) no. 1, pp. 13-23. doi : 10.5802/jtnb.473. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.473/

[AAB01] M. Alsina, A. Arenas, P. Bayer (eds.), Corbes de Shimura i aplicacions. STNB, Barcelona, 2001.

[AB04] M. Alsina, P. Bayer, Quaternion orders, quadratic forms and Shimura curves. CRM Monograph Series, vol. 22, American Mathematical Society, Providence, RI, 2004. | MR: 2038122 | Zbl: 1073.11040

[Als00] M. Alsina, Dominios fundamentales modulares. Rev. R. Acad. Cienc. Exact. Fis. Nat. 94 (2000), no. 3, 309–322. | MR: 1843547 | Zbl: 1024.11024

[Eic55] M. Eichler, Zur Zahlentheorie der Quaternionen-Algebren. J. reine angew. Math. 195 (1955), 127–151. | MR: 80767 | Zbl: 0068.03303

[Ogg83] A. P. Ogg, Real points on Shimura curves. Arithmetic and geometry, Vol. I, Progr. Math., vol. 35, Birkhäuser Boston, Boston, MA, 1983, pp. 277–307. | MR: 717598 | Zbl: 0531.14014

[Shi67] G. Shimura, Construction of class fields and zeta functions of algebraic curves. Annals of Math. 85 (1967), 58–159. | MR: 204426 | Zbl: 0204.07201

[Vig80] M.F. Vigneras, Arithmétique des algèbres de quaternions. Lecture Notes in Math., no. 800, Springer, 1980. | MR: 580949 | Zbl: 0422.12008

Cited by Sources: