For any Eichler order of level in an indefinite quaternion algebra of discriminant there is a Fuchsian group and a Shimura curve . We associate to a set of binary quadratic forms which have semi-integer quadratic coefficients, and we develop a classification theory, with respect to , for primitive forms contained in . In particular, the classification theory of primitive integral binary quadratic forms by is recovered. Explicit fundamental domains for allow the characterization of the -reduced forms.
Pour tout ordre d’Eichler de niveau dans une algèbre de quaternions indéfinie de discriminant , il existe un groupe Fuchsien et une courbe de Shimura . Nous associons à un ensemble de formes quadratiques binaires ayant des coefficients semi-entiers quadratiques et developpons une classification des formes quadratiques primitives de pour rapport à . En particulier nous retrouvons la classification des formes quadratiques primitives et entières de . Un domaine fondamental explicite pour permet de caractériser les formes réduites.
@article{JTNB_2005__17_1_13_0, author = {Montserrat Alsina}, title = {Binary quadratic forms and {Eichler} orders}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {13--23}, publisher = {Universit\'e Bordeaux 1}, volume = {17}, number = {1}, year = {2005}, doi = {10.5802/jtnb.473}, mrnumber = {2152207}, zbl = {1079.11022}, language = {en}, url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.473/} }
TY - JOUR AU - Montserrat Alsina TI - Binary quadratic forms and Eichler orders JO - Journal de théorie des nombres de Bordeaux PY - 2005 SP - 13 EP - 23 VL - 17 IS - 1 PB - Université Bordeaux 1 UR - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.473/ DO - 10.5802/jtnb.473 LA - en ID - JTNB_2005__17_1_13_0 ER -
Montserrat Alsina. Binary quadratic forms and Eichler orders. Journal de théorie des nombres de Bordeaux, Volume 17 (2005) no. 1, pp. 13-23. doi : 10.5802/jtnb.473. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.473/
[AAB01] M. Alsina, A. Arenas, P. Bayer (eds.), Corbes de Shimura i aplicacions. STNB, Barcelona, 2001.
[AB04] M. Alsina, P. Bayer, Quaternion orders, quadratic forms and Shimura curves. CRM Monograph Series, vol. 22, American Mathematical Society, Providence, RI, 2004. | MR | Zbl
[Als00] M. Alsina, Dominios fundamentales modulares. Rev. R. Acad. Cienc. Exact. Fis. Nat. 94 (2000), no. 3, 309–322. | MR | Zbl
[Eic55] M. Eichler, Zur Zahlentheorie der Quaternionen-Algebren. J. reine angew. Math. 195 (1955), 127–151. | MR | Zbl
[Ogg83] A. P. Ogg, Real points on Shimura curves. Arithmetic and geometry, Vol. I, Progr. Math., vol. 35, Birkhäuser Boston, Boston, MA, 1983, pp. 277–307. | MR | Zbl
[Shi67] G. Shimura, Construction of class fields and zeta functions of algebraic curves. Annals of Math. 85 (1967), 58–159. | MR | Zbl
[Vig80] M.F. Vigneras, Arithmétique des algèbres de quaternions. Lecture Notes in Math., no. 800, Springer, 1980. | MR | Zbl
Cited by Sources: