Nouvelles méthodes pour minorer des combinaisons linéaires de logarithmes de nombres algébriques
Journal de Théorie des Nombres de Bordeaux, Tome 3 (1991) no. 1, pp. 129-185.

Depuis un peu plus de vingt ans, la recherche de minorations de combinaisons linéaires de logarithmes de nombres algébriques avec des coefficients algébriques a fait l'objet de nombreux travaux. Dès que le nombre de logarithmes dépasse 2, toutes les démonstrations utilisées jusqu'à présent reposaient sur la méthode de Baker. Nous proposons ici d'autres méthodes.

Up to now Baker’s method was the only one to yield lower bounds for linear forms in logarithms of algebraic numbers, at least when the number of logarithms is bigger than 2. We propose here other methods. While Baker’s work is a generalization of Gel’fond’s solution of Hilbert’s problem, our approach is based on Schneider’s solution of this problem. This first paper is devoted to the “dual” of a proof due to N. Hirata of a lower bound for linear forms in a commutative algebraic group (here we consider only the usual logarithms). In a subsequent paper we shall develop the “dual” of Baker’s method.

DOI : https://doi.org/10.5802/jtnb.46
Mots clés : formes linéaires de logarithmes, transcendance, approximation diophantienne, méthodes de Schneider, Gel'fond, Baker
@article{JTNB_1991__3_1_129_0,
     author = {Waldschmidt, Michel},
     title = {Nouvelles m\'ethodes pour minorer des combinaisons lin\'eaires de logarithmes de nombres alg\'ebriques},
     journal = {Journal de Th\'eorie des Nombres de Bordeaux},
     pages = {129--185},
     publisher = {Universit\'e Bordeaux I},
     volume = {3},
     number = {1},
     year = {1991},
     doi = {10.5802/jtnb.46},
     zbl = {0733.11020},
     mrnumber = {1116105},
     language = {fr},
     url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.46/}
}
Michel Waldschmidt. Nouvelles méthodes pour minorer des combinaisons linéaires de logarithmes de nombres algébriques. Journal de Théorie des Nombres de Bordeaux, Tome 3 (1991) no. 1, pp. 129-185. doi : 10.5802/jtnb.46. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.46/

[[B]] A. Baker, The theory of linear forms in logarithms, Chap.1 de: Transcendence Theory: Advances and Applications, ed. A.Baker and D.W.Masser, Academic Press (1977), 1-27.. | MR 498417 | Zbl 0361.10028

[[BGMMS]] J. Blass, A.M. Glass, D.K. Manski, D.B. Meronk and R.P. Steiner, Constants for lower bounds for linear forms in the logarithms of algebraic numbers, Acta Arith. 55 (1990), 1-22. | MR 1056110 | Zbl 0709.11037

[[G]] A.O. Gel'Fond, Transcendental and algebraic numbers, Moscou (1952), Dover, New-York (1960).. | MR 111736 | Zbl 0090.26103

[H] N. Hirata, Formes linéaires d'intégrales elliptiques, Séminaire de Théorie des Nombres, Paris 1988- 89, Birkhäuser Verlag, P.M. 91 (1990), 117-140. | Zbl 0716.11033

[MW1] M. Mignotte and M. Waldschmidt, Linear forms in two logarithms and Schneider's method, Math. Ann. 231 (1978), 241-267. | MR 460247 | Zbl 0349.10029

[MW2] M. Mignotte and M. Waldschmidt, Linear forms in two logarithms and Schneider's method, II, Acta Arith. 53 (1989), 251-287. | MR 1032827 | Zbl 0642.10034

[MW3] M. Mignotte and M. Waldschmidt, Linear forms in two logarithms and Schneider's method, III, Ann. Fac. Sci. Toulouse 97 (1989), 43-75. | Numdam | MR 1425750 | Zbl 0702.11044

[P] P. Philippon, Lemme de zéros dans les groupes algébriques commutatifs, Bull. Soc. Math. France 114, (1986), 355-383, et 115 (1987), 397-398. | Numdam | MR 878242 | Zbl 0617.14001

[PW1] P. Philippon et M. Waldschmidt, Formes linéaires de logarithmes sur les groupes algébriques commutatifs, Illinois J. Math. 32 (1988), 281-314. | MR 945864 | Zbl 0651.10023

[PW2] P. Philippon and M. Waldschmidt, Lower bounds for linear forms in logarithms, in: New Advances in Transcendence Theory, ed. A.Baker, Cambridge Univ. Press (1988), 280-312. | MR 972007 | Zbl 0659.10037

[S] Th. Schneider, Transzendenzuntersuchungen periodischer Funktionen. I. Transzendenz von Potenzen, J. reine angew. Math. 172 (1934), 65-69, Approximate formulas for some functions of prime numbers, Illinois J. Math., 6 (1962), 64-94.[RS] J.B. Rösser and L. Schoenfeld.. | JFM 60.0163.03

[W1] M. Waldschmidt, Transcendence methods Queen's Papers in Pure and Applied Mathematics. | Zbl 0432.10016

[W2] M. Waldschmidt, A lower bound for linear forms in logarithms, Acta Arith. 37 (1980), 257-283. | MR 598881 | Zbl 0357.10017

[W3] M. Waldschmidt, On the transcendence methods of Gel'fond and Schneider in several variables, New Advances in Transcendence Theory, ed. A. Baker, Cambridge Univ. Press (1988), Chap. 24, 375-398. | Zbl 0659.10035

[W4] M. Waldschmidt, Fonctions auxiliaires et fonctionnelles analytiques, J. Analyse Math., à paraître.

[Wü] G. Wüstholz, A new approach to Baker's theorem on linear forms in logarithms (III), in New Advances in Transcendence Theory ed. A. Baker, Cambridge Univ. Press (1988), Chap. 25, 399-410. | Zbl 0659.10036

[Y2] Yu Kunrui, Linear forms in p-adic logarithms, Acta Arith. 53 (1989), 107-186. | Zbl 0699.10050