An Arakelov theoretic proof of the equality of conductor and discriminant
Journal de théorie des nombres de Bordeaux, Volume 16 (2004) no. 2, pp. 423-427.

We give an Arakelov theoretic proof of the equality of conductor and discriminant.

Nous donnons une preuve utilisant la théorie d’Arakelov de l’égalité du conducteur et du discriminant.

DOI: 10.5802/jtnb.454
Sinan Ünver 1

1 Department of Mathematics University of Chicago 5734 S. University Ave. Chicago IL 60637, USA
@article{JTNB_2004__16_2_423_0,
     author = {Sinan \"Unver},
     title = {An {Arakelov} theoretic proof of the equality of conductor and discriminant},
     journal = {Journal de th\'eorie des nombres de Bordeaux},
     pages = {423--427},
     publisher = {Universit\'e Bordeaux 1},
     volume = {16},
     number = {2},
     year = {2004},
     doi = {10.5802/jtnb.454},
     mrnumber = {2143562},
     zbl = {1078.14030},
     language = {en},
     url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.454/}
}
TY  - JOUR
AU  - Sinan Ünver
TI  - An Arakelov theoretic proof of the equality of conductor and discriminant
JO  - Journal de théorie des nombres de Bordeaux
PY  - 2004
DA  - 2004///
SP  - 423
EP  - 427
VL  - 16
IS  - 2
PB  - Université Bordeaux 1
UR  - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.454/
UR  - https://www.ams.org/mathscinet-getitem?mr=2143562
UR  - https://zbmath.org/?q=an%3A1078.14030
UR  - https://doi.org/10.5802/jtnb.454
DO  - 10.5802/jtnb.454
LA  - en
ID  - JTNB_2004__16_2_423_0
ER  - 
%0 Journal Article
%A Sinan Ünver
%T An Arakelov theoretic proof of the equality of conductor and discriminant
%J Journal de théorie des nombres de Bordeaux
%D 2004
%P 423-427
%V 16
%N 2
%I Université Bordeaux 1
%U https://doi.org/10.5802/jtnb.454
%R 10.5802/jtnb.454
%G en
%F JTNB_2004__16_2_423_0
Sinan Ünver. An Arakelov theoretic proof of the equality of conductor and discriminant. Journal de théorie des nombres de Bordeaux, Volume 16 (2004) no. 2, pp. 423-427. doi : 10.5802/jtnb.454. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.454/

[Bloch] S. Bloch, Cycles on arithmetic schemes and Euler characteristics of curves. Proc. of Sympos. Pure Math. 46 (1987) AMS, 421–450. | MR | Zbl

[CPT] T. Chinburg, G. Pappas, M.J. Taylor, -constants and Arakelov Euler characteristics. Preprint, (1999).

[Deligne] P. Deligne, Le déterminant de la cohomologie. Contemp. Math. 67 (1987), 93–177. | MR | Zbl

[Falt] G. Faltings, Calculus on arithmetic surfaces. Ann. Math. 119 (1984), 387–424. | MR | Zbl

[Fulton] W. Fulton, Intersection theory. Springer-Verlag, Berlin, 1984. | MR | Zbl

[G-S] H. Gillet, C. Soulé, An arithmetic Riemann-Roch theorem. Invent. Math. 110 (1992), 473–543. | MR | Zbl

[M-B] L. Moret-Bailly, La formule de Noether pour les surfaces arithmétiques. Invent. Math. 98 (1989), 499–509. | MR | Zbl

[Mumf] D. Mumford, Stability of projective varieties. Einseign. Math. 23 (1977), 39–100. | MR | Zbl

[Saito] T. Saito, Conductor, discriminant, and the Noether formula of arithmetic surfaces. Duke Math. J. 57 (1988), 151–173. | MR | Zbl

Cited by Sources: