Modularity of Galois representations
Journal de Théorie des Nombres de Bordeaux, Tome 15 (2003) no. 1, pp. 367-381.

Dans cet article, nous donnons une interprétation en termes de théorie de Galois des représentations galoisiennes p-adiques de dimension 2 associés aux formes modulaires holomorphes de Hilbert qui sont des «new forms». L’article suit pour l’essentiel l’exposé des Journées Arithmétiques de 2001.

This paper is essentially the text of the author’s lecture at the 2001 Journées Arithmétiques. It addresses the problem of identifying in Galois-theoretic terms those two-dimensional, p-adic Galois representations associated to holomorphic Hilbert modular newforms.

@article{JTNB_2003__15_1_367_0,
     author = {Skinner, Chris},
     title = {Modularity of {Galois} representations},
     journal = {Journal de Th\'eorie des Nombres de Bordeaux},
     pages = {367--381},
     publisher = {Universit\'e Bordeaux I},
     volume = {15},
     number = {1},
     year = {2003},
     doi = {10.5802/jtnb.407},
     zbl = {1057.11032},
     mrnumber = {2019021},
     language = {en},
     url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.407/}
}
Chris Skinner. Modularity of Galois representations. Journal de Théorie des Nombres de Bordeaux, Tome 15 (2003) no. 1, pp. 367-381. doi : 10.5802/jtnb.407. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.407/

[BR] D. Blasius, J. Rogawski, Motives for Hilbert modular forms. Invent. Math. 114 (1993), no. 1, 55-87. | EuDML 144142 | MR 1235020 | Zbl 0829.11028

[BCDT] C. Breuil, B. Conrad, F. Diamond, R. Taylor, On the modularity of elliptic curves over Q: wild 3-adic exercises. J. Amer. Math. Soc. 14 (2001), no. 4, 843-939. [BDST] K. Buzzard, M. Dickinson, N. Shepherd-Barron, R. Taylor, On icosahedral Artin representations. Duke Math. J. 109 (2001), no. 2, 283-318. | MR 1839918 | Zbl 0982.11033

[BT] K. Buzzard, R. Taylor, Companion forms and weight one forms. Ann. of Math. 149 (1999), no. 3, 905-919. | EuDML 121093 | MR 1709306 | Zbl 0965.11019

[CDT] B. Conrad, F. Diamond, R. Taylor, Modularity of certain potentially Barsotti-Tate Galois representations. J. Amer. Math. Soc. 12 (1999), no. 2, 521-567. | MR 1639612 | Zbl 0923.11085

[DRS] B. De Smit, K. Rubin, R. Schoof, Criteria for complete intersections. In: Modular forms and Fermat's Last Theorem, 343-356, Springer, 1997. | MR 1638484 | Zbl 0903.13003

[D1] F. Diamond, On deformation rings and Hecke rings. Ann. of Math. (2) 144 (1996), no. 1, 137-166. | MR 1405946 | Zbl 0867.11032

[D2] F. Diamond, The refined conjecture of Serre. In: Elliptic Curves, Modular forms, and Fermat's Last Theorem (ed. J. Coates), International Press, Cambridge, MA, 1995. | MR 1363493 | Zbl 0853.11031

[D3] F. Diamond, The Taylor-Wiles construction and multiplicity one. Invent. Math. 128 (1997), no. 2, 379-391. | MR 1440309 | Zbl 0916.11037

[Di] M. Dickinson, On the modularity of certain 2-adic Galois representations. Duke Math. J. 109 (2001), no. 2, 319-382. | MR 1845182 | Zbl 1015.11020

[ES] J. Ellenborg, C. Skinner, On the modularity of Q-curves. Duke Math. J. 109 (2001), no. 1, 97-122. | MR 1844206 | Zbl 1009.11038

[Fo] J.-M. Fontaine, Représentations l-adiques potentiellement semi-stables. In: Périodes p-adiques, Asterisque 223 (1994) 321-247. | MR 1293977 | Zbl 0873.14020

[FoM] J.-M. Fontaine, B. Mazur, Geometric Galois representations. In: Elliptic Curves, modular forms, and Fermat's Last Theorem (Hong Kong, 1993), pp. 41-78, Internat. Press, 1995. | MR 1363495 | Zbl 0839.14011

[F1] K. Fujiwara, Deformation rings and Hecke algebras in the totally real case, preprint (1996).

[F2] K. Fujiwara, Deformation rings and Hecke algebras in the totally real case, preprint (1999).

[F3] K. Fujiwara, it Level optimazation in the totally real case, preprint (1999).

[H1] H. Hida, On nearly ordinary Hecke algebras for GL(2) over totally real fields. In: Algebraic number theory, Adv. Stud. Pure Math. 17, 139-169, Academic Press, 1989. | MR 1097614 | Zbl 0742.11026

[H2] H. Hida, Nearly ordinary Hecke algebras and Galois representations of several variables. In: Algebraic analysis, geometry, and number theory (Baltimore, MD 1988), 115-138, John Hopkins Univ. Press, 1989. | MR 1463699 | Zbl 0782.11017

[J] F. Jarvis, Level lowering for modular mod representations over totally real fields. Math. Ann. 313 (1999), 141-160. | MR 1666809 | Zbl 0978.11020

[M1] B. Mazur, Deforming Galois representations. In: Galois Groups over Q, vol. 16, MSRI Publications, Springer, 1989. | MR 1012172 | Zbl 0714.11076

[M2] B. Mazur, An introduction to the deformation theory of Galois representations. In: Modular Forms and Fermat's Last Theorem (eds. G. Cornell et al.), Springer-Verlag, New York, 1997. | MR 1638481 | Zbl 0901.11015

[Ra] A. Rajaei, On lowering the levels in modular mod Galois representations of totally real fields. Thesis, Princeton University, 1998.

[SW1] C. Skinner, A. Wiles, Ordinary representations and modular forms. Proc. Nat. Acad. Sci. U.S.A. 94 (1997), no. 20, 10520-10527. | MR 1471466 | Zbl 0924.11044

[SW2] C. Skinner, A. Wiles, Modular forms and residually reducible representations. Publ. Math. IHES 89 (1999), 5-126. | Numdam | MR 1793414 | Zbl 1005.11030

[SW3] C. Skinner, A. Wiles, Base change and a problem of Serre. Duke Math. J. 107 (2001), no. 1, 15-25. | MR 1815248 | Zbl 1016.11017

[SW4] C. Skinner, A. Wiles, Nearly ordinary deformations of irreducible residual representations. Ann. Fac. Sci. Toulouse Math. (6) 10 (2001), no. 1, 185-215. | Numdam | MR 1928993 | Zbl 1024.11036

[Ta] J. Tate, Number theoretic background. In: Automorphic forms, representations and L-functions, Part 2, Proc. Sympos. Pure Math., XXXIII, pp. 3-26, Amer. Math. Soc., Providence, R.I., 1979. | MR 546607 | Zbl 0422.12007

[T] R. Taylor, On Galois representations associated to Hilbert modular forms. In: Elliptic Curves, Modular forms, and Fermat's Last Theorem (ed. J. Coates), International Press, Cambridge, MA, 1995. | Zbl 0836.11017

[TW] R. Taylor, A. Wiles, Ring-theoretic properties of certain Hecke algebras. Ann. of Math. (2) 141 (1995), no. 3, 553-572. | MR 1333036 | Zbl 0823.11030

[Wa] L. Washington, The non-p-part of the class number in a cyclotomic Zp-extension. Invent. Math. 49 (1978), no. 1, 87-97. | MR 511097 | Zbl 0403.12007

[W1] A. Wiles, Modular elliptic curves and Fermat's Last Theorem. Ann. of Math. (2) 142 (1995), 443-551. | MR 1333035 | Zbl 0823.11029

[W2] A. Wiles On ordinary λ-adic representations associated to modular forms. Invent. Math. 94 (1988), no. 3, 529-573. | Zbl 0664.10013