The metric simultaneous diophantine approximations over formal power series
Journal de Théorie des Nombres de Bordeaux, Volume 15 (2003) no. 1, pp. 151-161.

We discuss the metric theory of simultaneous diophantine approximations in the non-archimedean case. First, we show a Gallagher type 0-1 law. Then by using this theorem, we prove a Duffin-Schaeffer type theorem.

Nous étudions les propriétés métriques de l'approximation diophantienne simultanée dans le cas non archimédien. Nous prouvons d'abord une loi du 0 - 1 de type Gallagher, que nous utilisons ensuite pour obtenir un résultat de type Duffin-Schaeffer.

@article{JTNB_2003__15_1_151_0,
     author = {Kae Inoue},
     title = {The metric simultaneous diophantine approximations over formal power series},
     journal = {Journal de Th\'eorie des Nombres de Bordeaux},
     pages = {151--161},
     publisher = {Universit\'e Bordeaux I},
     volume = {15},
     number = {1},
     year = {2003},
     doi = {10.5802/jtnb.394},
     zbl = {1045.11052},
     mrnumber = {2019008},
     language = {en},
     url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.394/}
}
TY  - JOUR
TI  - The metric simultaneous diophantine approximations over formal power series
JO  - Journal de Théorie des Nombres de Bordeaux
PY  - 2003
DA  - 2003///
SP  - 151
EP  - 161
VL  - 15
IS  - 1
PB  - Université Bordeaux I
UR  - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.394/
UR  - https://zbmath.org/?q=an%3A1045.11052
UR  - https://www.ams.org/mathscinet-getitem?mr=2019008
UR  - https://doi.org/10.5802/jtnb.394
DO  - 10.5802/jtnb.394
LA  - en
ID  - JTNB_2003__15_1_151_0
ER  - 
%0 Journal Article
%T The metric simultaneous diophantine approximations over formal power series
%J Journal de Théorie des Nombres de Bordeaux
%D 2003
%P 151-161
%V 15
%N 1
%I Université Bordeaux I
%U https://doi.org/10.5802/jtnb.394
%R 10.5802/jtnb.394
%G en
%F JTNB_2003__15_1_151_0
Kae Inoue. The metric simultaneous diophantine approximations over formal power series. Journal de Théorie des Nombres de Bordeaux, Volume 15 (2003) no. 1, pp. 151-161. doi : 10.5802/jtnb.394. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.394/

[1] R.J. Duffin, A.C. Schaeffer, Khintchine's problem in metric diophantine approximation. Duke Math. J. 8 (1941), 243-255. | JFM | MR | Zbl

[2] G.W. Effinger, D.R. Hayes, Additive Number Theory of Polynomials Over a Finite Field. Oxford University Press, New York, 1991. | MR | Zbl

[3] P.X. Gallagher, Approximation by reduced fractions. J. Math. Soc. Japan 13 (1961), 342-345. | MR | Zbl

[4] K. Inoue, H. Nakada, On metric Diophantine approximation in positive characteristic, preprint. | MR | Zbl

[5] M.G. Nadkarni, Basic Ergodic Theory. Birkäuser Verlag, Basel-Boston- Berlin, 1991. | MR

[6] A.D. Pollington, R.C. Vaughan, The k-dimensional Duffin and Shaeffer conjecture. Sém. Théor. Nombres Bordeaux 1 (1989), 81-87. | EuDML | Numdam | MR | Zbl

[7] M. Rosen, Number Theory in Function Fields. Springer-Verlag, New York-Berlin-Heidelberg, 2001. | MR | Zbl

[8] V.G. Sprindżuk, Metric Theory of Diophantine Approximations. John Wiley & Sons, New York -Toronto-London- Sydney, 1979. | MR | Zbl

Cited by Sources: