Michel Mendès France's “Folding Lemma” for continued fraction expansions provides an unusual explanation for the well known symmetry in the expansion of a quadratic irrational integer.
Le «lemme de pliage» de Michel Mendès France fournit une nouvelle justification de la symétrie du développement en fraction continue d'un irrationnel quadratique.
@article{JTNB_2002__14_2_603_0, author = {Alfred J. Van der Poorten}, title = {Symmetry and folding of continued fractions}, journal = {Journal de Th\'eorie des Nombres de Bordeaux}, pages = {603--611}, publisher = {Universit\'e Bordeaux I}, volume = {14}, number = {2}, year = {2002}, doi = {10.5802/jtnb.377}, zbl = {1067.11001}, mrnumber = {2040696}, language = {en}, url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.377/} }
TY - JOUR TI - Symmetry and folding of continued fractions JO - Journal de Théorie des Nombres de Bordeaux PY - 2002 DA - 2002/// SP - 603 EP - 611 VL - 14 IS - 2 PB - Université Bordeaux I UR - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.377/ UR - https://zbmath.org/?q=an%3A1067.11001 UR - https://www.ams.org/mathscinet-getitem?mr=2040696 UR - https://doi.org/10.5802/jtnb.377 DO - 10.5802/jtnb.377 LA - en ID - JTNB_2002__14_2_603_0 ER -
Alfred J. Van der Poorten. Symmetry and folding of continued fractions. Journal de Théorie des Nombres de Bordeaux, Volume 14 (2002) no. 2, pp. 603-611. doi : 10.5802/jtnb.377. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.377/
[1] FOLDS!. Math. Intelligencer 4 (1982), 130-138; II: Symmetry disturbed. ibid. 173-181; III: More morphisms. ibid. 190-195. Erratum 5 (1983), page 5. | MR: 684028 | Zbl: 0493.10003
, , ,[2] Sur les fractions continues limitées. Acta Arith. 23 (1973), 207-215. | MR: 323727 | Zbl: 0228.10007
,[3] Principe de la symétrie perturbée. Seminar on Number Theory, Paris 1979-80, 77-98, Progr. Math. 12, Birkhäuser, Boston, Mass., 1981. [MR 83a:10089] | MR: 633890 | Zbl: 0451.10019
,[4] Folded continued fractions. J. Number Theory 40 (1992), 237-250. | MR: 1149740 | Zbl: 0753.11005
, ,Cited by Sources: