Linear independence of continued fractions
Journal de Théorie des Nombres de Bordeaux, Volume 14 (2002) no. 2, pp. 489-495.

The main result of this paper is a criterion for linear independence of continued fractions over the rational numbers. The proof is based on their special properties.

Nous donnons un critère d'indépendance linéaire sur le corps des rationnels qui s'applique à une famille donnée de nombres réels dont les développements en fractions continues satisfont certaines conditions.

@article{JTNB_2002__14_2_489_0,
     author = {Jaroslav Han\v{c}l},
     title = {Linear independence of continued fractions},
     journal = {Journal de Th\'eorie des Nombres de Bordeaux},
     pages = {489--495},
     publisher = {Universit\'e Bordeaux I},
     volume = {14},
     number = {2},
     year = {2002},
     doi = {10.5802/jtnb.370},
     zbl = {1067.11039},
     mrnumber = {2040689},
     language = {en},
     url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.370/}
}
TY  - JOUR
TI  - Linear independence of continued fractions
JO  - Journal de Théorie des Nombres de Bordeaux
PY  - 2002
DA  - 2002///
SP  - 489
EP  - 495
VL  - 14
IS  - 2
PB  - Université Bordeaux I
UR  - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.370/
UR  - https://zbmath.org/?q=an%3A1067.11039
UR  - https://www.ams.org/mathscinet-getitem?mr=2040689
UR  - https://doi.org/10.5802/jtnb.370
DO  - 10.5802/jtnb.370
LA  - en
ID  - JTNB_2002__14_2_489_0
ER  - 
%0 Journal Article
%T Linear independence of continued fractions
%J Journal de Théorie des Nombres de Bordeaux
%D 2002
%P 489-495
%V 14
%N 2
%I Université Bordeaux I
%U https://doi.org/10.5802/jtnb.370
%R 10.5802/jtnb.370
%G en
%F JTNB_2002__14_2_489_0
Jaroslav Hančl. Linear independence of continued fractions. Journal de Théorie des Nombres de Bordeaux, Volume 14 (2002) no. 2, pp. 489-495. doi : 10.5802/jtnb.370. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.370/

[1] P. Bundschuh, Transcendental continued fractions. J. Number Theory 18 (1984), 91-98. | MR: 734440 | Zbl: 0531.10035

[2] H. Davenport, K.F. Roth, Rational approximations to algebraic numbers. Mathematika 2 (1955), 160-167. | MR: 77577 | Zbl: 0066.29302

[3] G.M. Fichtengolc, Lecture on Differential and lntegrational Calculus II (Russian). Fizmatgiz, 1963.

[4] J. Hancl, Linearly unrelated sequences. Pacific J. Math. 190 (1999), 299-310. | MR: 1722896 | Zbl: 1005.11033

[5] J. Hancl, Continued fractional algebraic independence of sequences. Publ. Math. Debrecen 46 (1995), 27-31. | MR: 1316646 | Zbl: 0862.11045

[6] G.H. Hardy, E.M. Wright, An Introduction to the Theory of Numbers. Oxford Univ. Press, 1985. | MR: 568909

[7] H.P. Schlickewei, A.J. Van Der Poorten, The growth conditions for recurrence sequences. Macquarie University Math. Rep. 82-0041, North Ryde, Australia, 1982.

Cited by Sources: