Bases normales relatives en caractéristique positive
Journal de Théorie des Nombres de Bordeaux, Tome 14 (2002) no. 1, pp. 1-17.

Dans cet article, nous étudions la structure galoisienne des anneaux d’entiers des corps de fonctions cyclotomiques dans le cas modéré. Nous montrons qu’en général, si le corps de base est de genre plus grand que 1, ces anneaux ne sont pas libres sur les anneaux de groupes considérés.

In this paper, we study the Galois module structure of the ring of integers of cyclotomic function fields in the tame case. We show that, in general, these rings are not free over the group ring if the genus of the base field is greater than 1.

@article{JTNB_2002__14_1_1_0,
     author = {Angl\`es, Bruno},
     title = {Bases normales relatives en caract\'eristique positive},
     journal = {Journal de Th\'eorie des Nombres de Bordeaux},
     pages = {1--17},
     publisher = {Universit\'e Bordeaux I},
     volume = {14},
     number = {1},
     year = {2002},
     doi = {10.5802/jtnb.343},
     zbl = {1020.11069},
     mrnumber = {1925987},
     language = {fr},
     url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.343/}
}
Bruno Anglès. Bases normales relatives en caractéristique positive. Journal de Théorie des Nombres de Bordeaux, Tome 14 (2002) no. 1, pp. 1-17. doi : 10.5802/jtnb.343. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.343/

[1] B. Anglès, On the orthogonal of cyclotomic units in positive characteristic. J. Number Theory 79 (1999), 258-283. | MR 1728150 | Zbl 1001.11046

[2] J. Brinkhuis, Galois modules and embedding problems. J. Reine Ang. Math, 346 (1984), 141-164. | MR 727401 | Zbl 0525.12008

[3] J. Brinkhuis, Normal integral bases and complex conjugation. J. Reine Ang. Math 375/376 (1987), 157-166. | MR 882295 | Zbl 0609.12009

[4] R.J. Chapman, Carlitz modules and normal integral bases. J. London Math. Soc. 44 (1991), 250-260. | MR 1136438 | Zbl 0749.11049

[5] J. Cougnard, Bases normales relatives dans certaines extensions cyclotomiques. J. Number Theory 23 (1986), 336-346. | MR 846963 | Zbl 0588.12003

[6] J. Cougnard, Nouveaux exemples d'extensions relatives sans base normale. preprint 2001.

[7] A. Fröhlich, Galois module sructure of algebraic integers. Springer-Verlag, 1983. | MR 717033 | Zbl 0501.12012

[8] D. Goss, Basic structures of function field arithmetic. Springer-Verlag, 1996. | MR 1423131 | Zbl 0874.11004

[9] C. Greither, Relative integral normal bases in Q(ζp), J. Number Theory 35 (1990), 180-193. | Zbl 0718.11053

[10] C. Greither, D.R. Replogle, K. Rubin, A. Srivastav, Swan modules and Hilbert-Speiser number fields. J. Number Theory 79 (1999), 164-173. | MR 1718724 | Zbl 0941.11044

[11] D. Hayes, Explicit class field theory for rational function fields. Trans. Amer. Math. soc. 189 (1974), 77-91. | MR 330106 | Zbl 0292.12018

[12] J.T. Tate, Global class field theory. In Algebraic Number Theory, edited by J. W. S. Cassels and A. Frôhlich, Academic Press, 162-203, 1967. | MR 220697 | Zbl 1179.11041

[13] D. Thakur, Gauss sums for Fq [T]. Invent. Math. 94 (1988), 105-112. | MR 958591 | Zbl 0629.12014