@article{JTNB_1990__2_2_365_0, author = {Henryk Iwaniec}, title = {On the order of vanishing of modular $L$-functions at the critical point}, journal = {Journal de Th\'eorie des Nombres de Bordeaux}, pages = {365--376}, publisher = {Universit\'e Bordeaux I}, volume = {2}, number = {2}, year = {1990}, doi = {10.5802/jtnb.33}, zbl = {0719.11029}, mrnumber = {1081731}, language = {en}, url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.33/} }
TY - JOUR TI - On the order of vanishing of modular $L$-functions at the critical point JO - Journal de Théorie des Nombres de Bordeaux PY - 1990 DA - 1990/// SP - 365 EP - 376 VL - 2 IS - 2 PB - Université Bordeaux I UR - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.33/ UR - https://zbmath.org/?q=an%3A0719.11029 UR - https://www.ams.org/mathscinet-getitem?mr=1081731 UR - https://doi.org/10.5802/jtnb.33 DO - 10.5802/jtnb.33 LA - en ID - JTNB_1990__2_2_365_0 ER -
Henryk Iwaniec. On the order of vanishing of modular $L$-functions at the critical point. Journal de Théorie des Nombres de Bordeaux, Volume 2 (1990) no. 2, pp. 365-376. doi : 10.5802/jtnb.33. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.33/
[1] Le grand Crible dans la Théorie Analytique des Nombres, Astérique 18 (1973). | MR: 371840 | Zbl: 0292.10035
,[2] Eisenstein series on the metaplectic group and non-vanishing theorems for automorphic L-functions and their derivatives. Ann. Math. 131 (1990), 53-127. | MR: 1038358 | Zbl: 0699.10039
, and ,[3] The non-vanishing of Rankin-Selberg zeta-functions at special points, AMS Contemporary Mathematics Vol. 53 (1986), 51-95. | MR: 853553 | Zbl: 0595.10025
and ,[4] Finateness of E(Q) and III(E, Q) for a subclass of Weil curves. Math. USSR Izv.
,[5] Mean values of derivatives of modular L-series. (to appear in Ann. Math.). (See also , Non-vanishing of L-functions and their derivatives in Automorphic Forms and Analytic Number Theory, (edited by R. Murty), CRM Publications, Montreal 1990, 89-113). | Zbl: 0745.11033
and ,[6] On cusp forms for co-finite subgroups of PSL(2, R). Invent. Math. 80 (1985), 339-364. | MR: 788414 | Zbl: 0558.10017
and ,[7] On L-functions of elliptic curves and anticyclotomic towers. Invent. Math. 75 (1984), 383-408. | MR: 735332 | Zbl: 0565.14008
,[8] On L-functions of elliptic curves and cyclotomic towers. Invent. Math. 75 (1984), 409-423. | MR: 735333 | Zbl: 0565.14006
,[9] L-functions and division towers. Math. Ann. 281(1988), 611-632. | MR: 958262 | Zbl: 0656.14013
,[10] Non-vanishing of L-functions for GL(2). Invent. Math. 97 (1989), 381-403. | Zbl: 0677.10020
,[11] The vanishing of certain Rankin-Selberg convolutions, in Automorphic Forms and Analytic Number Theory. (edited by R. Murty) CRM Publications, Montreal 1990, 123-133. | MR: 1111015 | Zbl: 0737.11014
,[12] On modular forms of half-integral weight. Ann. Math. 97 (1973), 440-481. | MR: 332663 | Zbl: 0266.10022
,Cited by Sources: