We prove in this article that almost all large integers have a representation as the sum of a cube, a biquadrate, ..., and a tenth power.
Nous prouvons dans cet article que presque tout entier s'écrit comme la somme d'un cube, d'un bicarré, ..., et d'une puissance dixième.
@article{JTNB_2001__13_1_227_0, author = {M. B. S. Laporta and T. D. Wooley}, title = {The representation of almost all numbers as sums of unlike powers}, journal = {Journal de Th\'eorie des Nombres de Bordeaux}, pages = {227--240}, publisher = {Universit\'e Bordeaux I}, volume = {13}, number = {1}, year = {2001}, doi = {10.5802/jtnb.317}, zbl = {1048.11074}, mrnumber = {1838083}, language = {en}, url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.317/} }
TY - JOUR TI - The representation of almost all numbers as sums of unlike powers JO - Journal de Théorie des Nombres de Bordeaux PY - 2001 DA - 2001/// SP - 227 EP - 240 VL - 13 IS - 1 PB - Université Bordeaux I UR - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.317/ UR - https://zbmath.org/?q=an%3A1048.11074 UR - https://www.ams.org/mathscinet-getitem?mr=1838083 UR - https://doi.org/10.5802/jtnb.317 DO - 10.5802/jtnb.317 LA - en ID - JTNB_2001__13_1_227_0 ER -
M. B. S. Laporta; T. D. Wooley. The representation of almost all numbers as sums of unlike powers. Journal de Théorie des Nombres de Bordeaux, Volume 13 (2001) no. 1, pp. 227-240. doi : 10.5802/jtnb.317. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.317/
[1] Sums of squares and higher powers. II. J. London Math. Soc. (2) 35 (1987), 244-250. | MR: 881513 | Zbl: 0589.10049
,[2] A problem in additive number theory. Math. Proc. Cambridge Philos. Soc. 103 (1988), 27-33. | MR: 913447 | Zbl: 0655.10041
,[3] On Waring's problem: two cubes and seven biquadrates. Tsukuba Math. J. 24 (2000), 387-417. | MR: 1818095 | Zbl: 1003.11045
, ,[4] On Waring's problem: two cubes and one square. Proc. London Math. Soc. (2) 43 (1937), 73-104. | JFM: 63.0125.02 | Zbl: 0016.24601
, ,[5] The representation of numbers as sums of unlike powers. J. London Math. Soc. (2) 51 (1995), 14-26. | MR: 1310718 | Zbl: 0816.11049
,[6] The representation of numbers as sums of unlike powers. II. J. Amer. Math. Soc. 9 (1996), 919-940. | MR: 1325794 | Zbl: 0866.11054
,[7] On a new approach to various problems of Waring's type. In: Recent progress in analytic number theory, vol. 1 (Durham, 1979), Academic Press, London (1981), 127-191. | MR: 637346 | Zbl: 0463.10037
,[8] Proof that almost all positive integers are sums of a square, a positive cube and a fourth power. J. London Math. Soc. 24 (1949), 4-13. | MR: 28336 | Zbl: 0032.01401
,[9] A problem in additive number theory. Proc. London Math. Soc. (2) 53 (1951), 381-395. | MR: 41874 | Zbl: 0044.03601
,[10] On additive number theory. Acta Arith. 13 (1967/68), 237-258. | EuDML: 204827 | MR: 222044 | Zbl: 0155.09002
,[11] On sums of powers and a related problem. Acta Arith. 36 (1980), 125-141. | EuDML: 205663 | MR: 581911 | Zbl: 0354.10016
,[12] On certain additive representations of integers. Portugal. Math. 42 (1983/84), 447-465. | EuDML: 115560 | MR: 836123 | Zbl: 0574.10048
,[13] On the representation of numbers as sums of powers of natural numbers. Proc. London Math. Soc. (3) 21 (1970), 160-180. | MR: 272734 | Zbl: 0206.06103
,[14] On sums of mixed powers. J. London Math. Soc. (2) 3 (1971), 677-688. | MR: 294279 | Zbl: 0221.10050
,[15] A ternary additive problem. Proc. London Math. Soc. (3) 41 (1980), 516-532. | MR: 591653 | Zbl: 0446.10042
,[16] On Waring's problem for cubes. J. Reine Angew. Math. 365 (1986), 122-170. | EuDML: 152808 | MR: 826156 | Zbl: 0574.10046
,[17] On Waring's problem for smaller exponents. Proc. London Math. Soc. (3) 52 (1986), 445-463. | MR: 833645 | Zbl: 0601.10035
,[18] A new iterative method in Waring's problem. Acta Math. 162 (1989), 1-71. | MR: 981199 | Zbl: 0665.10033
,[19] The Hardy-Littlewood method. Cambridge Tract No. 125, 2nd Edition, Cambridge University Press, 1997. | MR: 1435742 | Zbl: 0868.11046
,[20] On Waring's problem: some refinements. Proc. London Math. Soc. (3) 63 (1991), 35-68. | MR: 1105718 | Zbl: 0736.11058
, ,[21] Further improvements in Waring's problem. Acta Math. 174 (1995), 147-240. | MR: 1351319 | Zbl: 0849.11075
, ,[22] Further improvements in Waring's problem, IV: higher powers. Acta Arith. 94 (2000), 203-285. | EuDML: 207431 | MR: 1776896 | Zbl: 0972.11092
, ,[23] On simultaneous additive equations, II. J. Reine Angew. Math. 419 (1991), 141-198. | EuDML: 153348 | MR: 1116923 | Zbl: 0721.11011
,[24] Large improvements in Waring's problem. Ann. of Math. (2) 135 (1992), 131-164. | MR: 1147960 | Zbl: 0754.11026
,[25] New estimates for smooth Weyl sums. J. London Math. Soc. (2) 51 (1995), 1-13. | MR: 1310717 | Zbl: 0833.11041
,[26] Breaking classical convexity in Waring's problem: sums of cubes and quasi-diagonal behaviour. Invent. Math. 122 (1995), 421-451. | EuDML: 144327 | MR: 1359599 | Zbl: 0851.11055
,Cited by Sources: