On the distribution in the arithmetic progressions of reducible quadratic polynomials in short intervals, II
Journal de Théorie des Nombres de Bordeaux, Tome 13 (2001) no. 1, pp. 93-102.

Ce texte donne de nouveaux résultats sur la répartition dans les progressions arithmétiques (modulo un produit de deux nombres premiers) des valeurs (an+b)(cn+d) prises par un polynôme quadratique réductible lorsque l’entier n varie dans des intervalles courts n[x,x+x ϑ ], où ϑ(0,1]. Nous utilisons ici la méthode de dispersion, pour obtenir un niveau de répartition au delà du niveau classique θ. Nous obtenons pour niveau 3ϑ/2, améliorant en cela la valeur 3ϑ-3/2 obtenue par le grand crible. Nous terminons par une comparaison graphique des deux approches.

This paper gives further results about the distribution in the arithmetic progressions (modulo a product of two primes) of reducible quadratic polynomials (an+b)(cn+d) in short intervals n[x,x+x ϑ ], where now ϑ(0,1]. Here we use the Dispersion Method instead of the Large Sieve to get results beyond the classical level ϑ, reaching 3ϑ/2 (thus improving also the level of the previous paper, i.e. 3ϑ-3/2), but our new results are different in structure. Then, we make a graphical comparison of the two methods.

@article{JTNB_2001__13_1_93_0,
     author = {Coppola, Giovanni and Salerno, Saverio},
     title = {On the distribution in the arithmetic progressions of reducible quadratic polynomials in short intervals, {II}},
     journal = {Journal de Th\'eorie des Nombres de Bordeaux},
     pages = {93--102},
     publisher = {Universit\'e Bordeaux I},
     volume = {13},
     number = {1},
     year = {2001},
     doi = {10.5802/jtnb.306},
     zbl = {1046.11068},
     mrnumber = {1838072},
     language = {en},
     url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.306/}
}
Giovanni Coppola; Saverio Salerno. On the distribution in the arithmetic progressions of reducible quadratic polynomials in short intervals, II. Journal de Théorie des Nombres de Bordeaux, Tome 13 (2001) no. 1, pp. 93-102. doi : 10.5802/jtnb.306. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.306/

[1] E. Bombieri, Le grand crible dans la théorie analytique des nombres. Astérisque 18, Société mathématique de France, 1974. | MR 371840 | Zbl 0292.10035

[2] G. Coppola, S. Salerno, On the distribution in the arithmetic progressions of reducible quadratic polynomials in short intervals. Functiones et Approximatio XXVIII (2001), 75-81. | MR 1823993 | Zbl 1041.11063

[3] H. Halberstam, H.E. Richert, Sieve methods. Academic Press, London, 1974. | MR 424730 | Zbl 0298.10026

[4] C. Hooley, On the greatest prime factor of a quadratic polynomial. Acta Math. 117 (1967), 281-299. | MR 204383 | Zbl 0146.05704

[5] H. Iwaniec, Almost-primes represented by quadratic polynomials. Inventiones Math. 47 (1978), 171-188. | MR 485740 | Zbl 0389.10031

[6] Ju.V. Linnik, The dispersion method in binary additive problems. American Mathematical Society, 1963. | MR 168543 | Zbl 0112.27402

[7] S. Salerno, A. Vitolo, On the distribution in the arithmetic progressions of reducible quadratic polynomials. Izwestiya Rossiyskoy AN, Math.Series 58 (1994), 211-223. | MR 1307065 | Zbl 0839.11040