The hyperbola xy=N
Journal de Théorie des Nombres de Bordeaux, Tome 12 (2000) no. 1, pp. 87-92.

On montre plusieurs résultats à propos de la longueur minimale d’un arc de l’hyperbole xy=N contenant k points entiers.

We include several results providing bounds for an interval on the hyperbola xy=N containing k lattice points.

@article{JTNB_2000__12_1_87_0,
     author = {Cilleruelo, Javier and Jim\'enez-Urroz, Jorge},
     title = {The hyperbola $xy = N$},
     journal = {Journal de Th\'eorie des Nombres de Bordeaux},
     pages = {87--92},
     publisher = {Universit\'e Bordeaux I},
     volume = {12},
     number = {1},
     year = {2000},
     doi = {10.5802/jtnb.267},
     zbl = {1006.11055},
     mrnumber = {1827840},
     language = {en},
     url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.267/}
}
Javier Cilleruelo; Jorge Jiménez-Urroz. The hyperbola $xy = N$. Journal de Théorie des Nombres de Bordeaux, Tome 12 (2000) no. 1, pp. 87-92. doi : 10.5802/jtnb.267. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.267/

[1] J. Cilleruelo, A. Córdoba, Trigonometric polynomials and lattice points. Proc. Amer. Math. Soc. 115 (1992), 899-905. | MR 1089403 | Zbl 0777.11035

[2] J. Cilleruelo, J. Jiménez-Urroz, Divisors in a Dedekind domain. Acta. Arith. 85 (1998), 229-233. | MR 1627827 | Zbl 0910.11043

[3] A. Granville, J. Jiménez-Urroz, The least common multiple and lattice points on hyperbolas. To appear in Quart. J. Math. | MR 1782098 | Zbl 0983.11058

[4] G.H. Hardy, E.M. Wright, Introduction to the theory of numbers. Clarendon Press. 4th ed., Oxford, 1960. | MR 568909 | Zbl 0086.25803

Cité par document(s). Sources :