We include several results providing bounds for an interval on the hyperbola containing lattice points.
On montre plusieurs résultats à propos de la longueur minimale d’un arc de l’hyperbole contenant points entiers.
@article{JTNB_2000__12_1_87_0, author = {Javier Cilleruelo and Jorge Jim\'enez-Urroz}, title = {The hyperbola $xy = N$}, journal = {Journal de Th\'eorie des Nombres de Bordeaux}, pages = {87--92}, publisher = {Universit\'e Bordeaux I}, volume = {12}, number = {1}, year = {2000}, doi = {10.5802/jtnb.267}, zbl = {1006.11055}, mrnumber = {1827840}, language = {en}, url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.267/} }
TY - JOUR TI - The hyperbola $xy = N$ JO - Journal de Théorie des Nombres de Bordeaux PY - 2000 DA - 2000/// SP - 87 EP - 92 VL - 12 IS - 1 PB - Université Bordeaux I UR - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.267/ UR - https://zbmath.org/?q=an%3A1006.11055 UR - https://www.ams.org/mathscinet-getitem?mr=1827840 UR - https://doi.org/10.5802/jtnb.267 DO - 10.5802/jtnb.267 LA - en ID - JTNB_2000__12_1_87_0 ER -
Javier Cilleruelo; Jorge Jiménez-Urroz. The hyperbola $xy = N$. Journal de Théorie des Nombres de Bordeaux, Volume 12 (2000) no. 1, pp. 87-92. doi : 10.5802/jtnb.267. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.267/
[1] Trigonometric polynomials and lattice points. Proc. Amer. Math. Soc. 115 (1992), 899-905. | MR: 1089403 | Zbl: 0777.11035
, ,[2] Divisors in a Dedekind domain. Acta. Arith. 85 (1998), 229-233. | MR: 1627827 | Zbl: 0910.11043
, ,[3] The least common multiple and lattice points on hyperbolas. To appear in Quart. J. Math. | MR: 1782098 | Zbl: 0983.11058
, ,[4] Introduction to the theory of numbers. Clarendon Press. 4th ed., Oxford, 1960. | MR: 568909 | Zbl: 0086.25803
, ,Cited by Sources: