Under the Generalized Riemann Hypothesis, it is proved that for any there is depending on only such that every even integer is a sum of two odd primes and powers of .
On démontre que sous GRH et pour , tout entier pair assez grand est somme de deux nombres premiers impairs et de puissances de .
@article{JTNB_1999__11_1_133_0, author = {Jianya Liu and Ming-Chit Liu and Tianze Wang}, title = {On the almost {Goldbach} problem of {Linnik}}, journal = {Journal de Th\'eorie des Nombres de Bordeaux}, pages = {133--147}, publisher = {Universit\'e Bordeaux I}, volume = {11}, number = {1}, year = {1999}, doi = {10.5802/jtnb.242}, zbl = {0979.11051}, mrnumber = {1730436}, language = {en}, url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.242/} }
TY - JOUR TI - On the almost Goldbach problem of Linnik JO - Journal de Théorie des Nombres de Bordeaux PY - 1999 DA - 1999/// SP - 133 EP - 147 VL - 11 IS - 1 PB - Université Bordeaux I UR - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.242/ UR - https://zbmath.org/?q=an%3A0979.11051 UR - https://www.ams.org/mathscinet-getitem?mr=1730436 UR - https://doi.org/10.5802/jtnb.242 DO - 10.5802/jtnb.242 LA - en ID - JTNB_1999__11_1_133_0 ER -
Jianya Liu; Ming-Chit Liu; Tianze Wang. On the almost Goldbach problem of Linnik. Journal de Théorie des Nombres de Bordeaux, Volume 11 (1999) no. 1, pp. 133-147. doi : 10.5802/jtnb.242. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.242/
[C] On Goldbach's problem and the sieve methods. Sci. Sin., 21 (1978), 701-739. | MR: 517935 | Zbl: 0399.10046
,[D] Multiplicative Number Theory. 2nd ed., Springer, 1980. | MR: 606931 | Zbl: 0453.10002
,[G] Primes and powers of 2. Invent. Math. 29(1975), 125-142. | MR: 379410 | Zbl: 0305.10044
,[HL] Some problems of "patitio numerorum" V: A further contribution to the study of Goldbach's problem. Proc. London Math. Soc. (2) 22 (1923), 45-56. | JFM: 49.0127.03
and ,[HR] Sieve Methods, Academic Press, 1974. | MR: 424730 | Zbl: 0298.10026
and ,[KPP] A note on the exceptional set for Goldbach's problem in short intervals. Mh. Math. 116 (1993), 275-282; corrigendum 119 (1995), 215-216.
, and ,[L1] Prime numbers and powers of two. Trudy Mat. Inst. Steklov 38 (1951), 151-169. | MR: 50618 | Zbl: 0049.31402
,[L2] Addition of prime numbers and powers of one and the same number. Mat. Sb.(N. S.) 32 (1953), 3-60. | MR: 59938 | Zbl: 0051.03402
,[LLW1] The number of powers of 2 in a representation of large even integers (I). Sci. China Ser. A 41 (1998), 386-398. | MR: 1663182 | Zbl: 1029.11049
, , and ,[LLW2] The number of powers of 2 in a representation of large even integers (II). Sci. China Ser. A. 41 (1998), 1255-1271. | MR: 1681935 | Zbl: 0924.11086
, , and ,[LP] A pair correlation hypothesis and the exceptional set in Goldbach's problem. Mathematika 43 (1996), 349-361. | MR: 1433280 | Zbl: 0884.11042
and ,[P] Primzahlverteilung. Springer, 1957. | MR: 87685 | Zbl: 0080.25901
,[R] Über einige Sätze der additiven Zahlentheorie. Math. Ann. 109 (1934), 668-678. | JFM: 60.0131.03 | MR: 1512916 | Zbl: 0009.00801
,[RS] Approximate formulas for some functions of prime numbers. Illinois J. Math. 6 (1962), 64-94. | MR: 137689 | Zbl: 0122.05001
and ,[Vi] On an "almost binary" problem. Izv. Akad. Nauk. SSSR Ser. Mat. 20 (1956), 713-750. | MR: 87686 | Zbl: 0072.27001
,Cited by Sources: