Opérations sur les mots de Christoffel
Journal de Théorie des Nombres de Bordeaux, Tome 11 (1999) no. 1, pp. 111-132.

On peut définir la pente d'un mot écrit avec des 0 et des 1 comme le nombre de 1 divisé par le nombre de 0, et généraliser cette définition aux mots de longueur infinie. Considérant le lien entre les mots de Christoffel et les fractions continues, on se propose d'étudier le comportement de tels mots lorsqu'on additionne leurs pentes, ou qu'on les multiplie par un entier positif. Après un bref exposé des différentes notions liées aux mots de Christoffel, l'étude de la somme et de la multiplication sont présentées sous forme d'algorithmes permettant de connaître au mieux le mécanisme de ces opérations.

The slope of a finite sequence of 0 and 1 can be defined as the number of 1 divided by the number of 0 and it is possible to generalize this definition to infinite sequences. Considering the link between Christoffel words (or characteristic sequences) and continued fractions, we study the behaviour of such words when adding their slopes, or multiplying them by a positive integer. After an outline of the different notions around Christoffel words, the sum and product are introduced as algorithms permitting to understand the mechanism of these operations as well as possible.

@article{JTNB_1999__11_1_111_0,
     author = {Laurier, \'Eric},
     title = {Op\'erations sur les mots de {Christoffel}},
     journal = {Journal de Th\'eorie des Nombres de Bordeaux},
     pages = {111--132},
     publisher = {Universit\'e Bordeaux I},
     volume = {11},
     number = {1},
     year = {1999},
     doi = {10.5802/jtnb.241},
     zbl = {1066.11502},
     mrnumber = {1730435},
     language = {fr},
     url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.241/}
}
Éric Laurier. Opérations sur les mots de Christoffel. Journal de Théorie des Nombres de Bordeaux, Tome 11 (1999) no. 1, pp. 111-132. doi : 10.5802/jtnb.241. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.241/

[1] J.-P. Borel, F. Laubie, Construction de mots de Christoffel, C. R. Acad. Sci. Paris 313, sér. 1 (1991), 483-485. | MR 1131859 | Zbl 0742.11013

[2] J.-P. Borel, F. Laubie, Quelques mots sur la droite projective réelle, J. Théor. Nombres Bordeaux 5 (1993), 23-51. | Numdam | MR 1251226 | Zbl 0839.11008

[3] T.C. Brown, Description of the characteristic sequence of an irrational, Canad. Math. Bull. 36 (1993), 15-21. | MR 1205889 | Zbl 0804.11021

[4] H. Cohen, Multiplication par un entier d'une fraction continue périodique, Acta arith. 26 (1974), 129-148. | MR 360442 | Zbl 0273.10031

[5] D. Crisp, W. Moran, A. Pollington, P. Shiue, Substitution invariant cutting sequences, J. Théor. Nombres Bordeaux 5 (1993), 123-137. | Numdam | MR 1251232 | Zbl 0786.11041

[6] M. Hall, On the sum and product of continued fractions, Ann. of Math. 48 (1947), 966-993. | MR 22568 | Zbl 0030.02201

[7] G.H. Hardy, E.M. Wright, An introduction to the theory of numbers, Clarendon press, Oxford, 4th ed., 1960. | MR 568909 | Zbl 0086.25803

[8] F. Laubie, Prolongements homographiques de substitutions de mots de Christoffel, C. R. Acad. Sci. Paris 313, sér. 1 (1991), 565-567 | MR 1133485 | Zbl 0768.11024

[9] F. Laubie, E. Laurier, Calcul de multiples de mots de Christoffel, C. R. Acad. Sci. Paris 320, sér. 1 (1995), 765-768. | MR 1326679 | Zbl 0827.11015

[10] É. Laurier, Addition et multiplication par un entier des mots de Christoffel, Thèse, Limoges, 1995.

[11] M. Lothaire, Combinatorics on Words. Encyclopedia of mathematics and its applications, Cambridge university press, 1983. | MR 1475463 | Zbl 0874.20040

[12] R.C. Lyndon, Equations in free groups, Trans. Amer. math. soc. (96), 445-457. | MR 151503 | Zbl 0108.02301

[13] M. Mendès France, Sur les fractions continues limitées, Acta Arith. 23 (1973), 207-215. | MR 323727 | Zbl 0228.10007

[14] G.N. Raney, On continued fractions and finite automata, Math. Ann. 206 (1973), 265-283. | MR 340166 | Zbl 0251.10024