A C * -dynamical system with Dedekind zeta partition function and spontaneous symmetry breaking
Journal de Théorie des Nombres de Bordeaux, Volume 11 (1999) no. 1, pp. 15-30.

In this paper we extend to arbitrary number fields a construction of Bost-Connes of a C * -dynamical system with spontaneous symmetry breaking and partition function the Riemann zeta function.

Dans cet article nous étendons une construction de Bost-Connes, au cas d’un corps de nombres quelconque, d’un C * -système dynamique à brisure spontanée de symétrie et fonction de partition la fonction zêta de Riemann.

@article{JTNB_1999__11_1_15_0,
     author = {Paula B. Cohen},
     title = {A $C^\ast $-dynamical system with {Dedekind} zeta partition function and spontaneous symmetry breaking},
     journal = {Journal de Th\'eorie des Nombres de Bordeaux},
     pages = {15--30},
     publisher = {Universit\'e Bordeaux I},
     volume = {11},
     number = {1},
     year = {1999},
     doi = {10.5802/jtnb.236},
     zbl = {0962.11031},
     mrnumber = {1730430},
     language = {en},
     url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.236/}
}
TY  - JOUR
TI  - A $C^\ast $-dynamical system with Dedekind zeta partition function and spontaneous symmetry breaking
JO  - Journal de Théorie des Nombres de Bordeaux
PY  - 1999
DA  - 1999///
SP  - 15
EP  - 30
VL  - 11
IS  - 1
PB  - Université Bordeaux I
UR  - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.236/
UR  - https://zbmath.org/?q=an%3A0962.11031
UR  - https://www.ams.org/mathscinet-getitem?mr=1730430
UR  - https://doi.org/10.5802/jtnb.236
DO  - 10.5802/jtnb.236
LA  - en
ID  - JTNB_1999__11_1_15_0
ER  - 
%0 Journal Article
%T A $C^\ast $-dynamical system with Dedekind zeta partition function and spontaneous symmetry breaking
%J Journal de Théorie des Nombres de Bordeaux
%D 1999
%P 15-30
%V 11
%N 1
%I Université Bordeaux I
%U https://doi.org/10.5802/jtnb.236
%R 10.5802/jtnb.236
%G en
%F JTNB_1999__11_1_15_0
Paula B. Cohen. A $C^\ast $-dynamical system with Dedekind zeta partition function and spontaneous symmetry breaking. Journal de Théorie des Nombres de Bordeaux, Volume 11 (1999) no. 1, pp. 15-30. doi : 10.5802/jtnb.236. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.236/

[ALR] J. Arledge, M. Laca and I. Raeburn, Semigroup crossed products and Hecke algebras arising from number fields, Doc. Mathematica 2 (1997) 115-138. | MR: 1451963 | Zbl: 0940.47062

[BC] J-B. Bost and A. Connes, Hecke algebras, Type III factors and phase transitions with spontaneous symmetry breaking in number theory, Selecta Math. (New Series), 1 (1995), 411-457. | MR: 1366621 | Zbl: 0842.46040

[C] A. Connes, Formule de trace en géométrie non commutative et hypothèse de Riemann, C. R. Acad. Sci. Paris t.323, Série 1 (Analyse), (1996) 1231-1236. | MR: 1428542 | Zbl: 0864.46042

[HaLe] D. Harari and E. Leichtnam, Extension du phénomène de brisure spontanée de symétrie de Bost-Connes au cas des corps globaux quelconques, Selecta Mathematica, New Series 3 (1997), 205-243. | MR: 1466166 | Zbl: 0924.46051

[J] B. Julia, Statistical Theory of Numbers, in Number Theory and Physics, Les Houches Winter School, J-M. Luck, P. Moussa, M. Waldschmidt eds., Springer Proceedings in Physics 47 (1990), 276-293. | MR: 1058473 | Zbl: 0727.11033

[L] M. Laca, Semigroups of * -endomorphisms, Dirichlet series and Phase Transitions, J. Functional Analysis, to appear. | MR: 1608003 | Zbl: 0957.46039

[LR1] M. Laca and I. Raeburn, Semigroup crossed products and the Toeplitz algebras of non-abelian groups, J. Functional Analysis 139 (1996), 415-440. | MR: 1402771 | Zbl: 0887.46040

[LR2] M. Laca and I. Raeburn, A semigroup crossed product arising in number theory, J. London Math. Soc., to appear. | MR: 1688505 | Zbl: 0922.46058

[Lg] S. Lang, Algebraic Number Theory, Second Edition, Springer-Verlag, Berlin Heidelberg New York Tokyo, 1994. | MR: 1282723 | Zbl: 0811.11001

[N] J. Neukirch, Class Field Theory, Grund. der math. Wissen. 280, Springer-Verlag, Berlin Heidelberg New York Tokyo, 1980. | MR: 819231 | Zbl: 0587.12001

[Ni] A. Nica, C* - algebras generated by isometries and Wiener-Hopf operators, J. Operator Theory 27 (1992), 17-52. | MR: 1241114 | Zbl: 0809.46058

Cited by Sources: