It is proved that the sequence contains infinite squarefree integers whenever , which improves Rieger’s earlier range .
Nous montrons que pour la suite contient une infinité d’entiers sans facteur carré ; cela améliore un résultat antérieur dû à Rieger qui obtenait l’infinitude de ces entiers pour
@article{JTNB_1998__10_2_287_0, author = {Xiaodong Cao and Wenguang Zhai}, title = {The distribution of square-free numbers of the form $[n^c]$}, journal = {Journal de Th\'eorie des Nombres de Bordeaux}, pages = {287--299}, publisher = {Universit\'e Bordeaux I}, volume = {10}, number = {2}, year = {1998}, doi = {10.5802/jtnb.229}, zbl = {0926.11066}, mrnumber = {1828246}, language = {en}, url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.229/} }
TY - JOUR TI - The distribution of square-free numbers of the form $[n^c]$ JO - Journal de Théorie des Nombres de Bordeaux PY - 1998 DA - 1998/// SP - 287 EP - 299 VL - 10 IS - 2 PB - Université Bordeaux I UR - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.229/ UR - https://zbmath.org/?q=an%3A0926.11066 UR - https://www.ams.org/mathscinet-getitem?mr=1828246 UR - https://doi.org/10.5802/jtnb.229 DO - 10.5802/jtnb.229 LA - en ID - JTNB_1998__10_2_287_0 ER -
Xiaodong Cao; Wenguang Zhai. The distribution of square-free numbers of the form $[n^c]$. Journal de Théorie des Nombres de Bordeaux, Volume 10 (1998) no. 2, pp. 287-299. doi : 10.5802/jtnb.229. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.229/
[1] The square-free divisor problem. Quart. J. Math. Oxford Ser.(2) 45 (1994), no. 179, 269-277. | MR: 1295577 | Zbl: 0812.11053
,[2] Primes of the form [nc]. J. Number Theory 50 (1995), 261-277. | MR: 1316821 | Zbl: 0822.11062
, , ,[3] On the order of ζ(1/2 + it). Ann. Scula Norm. Sup. Pisa Cl. Sci.(4) 13 (1986), no. 3, 449-472. | Numdam | Zbl: 0615.10047
, ,[4] Sur la répartition des nombers [nc] dans les progressions arithmétiques. C. R. Acad. Sci. Paris Sér. A 277 (1973), 647-650. | MR: 337834 | Zbl: 0265.10024
,[5] Exponential sums with monomials. J. Number Theory 33 (1989), 311-333. | MR: 1027058 | Zbl: 0687.10028
, ,[6] The Pjateckiĭ-Šapiro prime number theorem. J. Number Theory 16 (1983), 242-266. | MR: 698168 | Zbl: 0513.10042
,[7] Power free values of polynomials III. Proc. London Math. Soc.(3) 41 (1980), 66-82. | MR: 579717 | Zbl: 0435.10026
, ,[8] On the number of abelian groups of given order. Acta Arith. 64 (1993), 285-296. | MR: 1225430 | Zbl: 0790.11074
,[9] The distribution of square-free numbers. in Recent Progress in Number Theory vol 1, pp. 247-256, Academic Press, London-New York, 1981. | MR: 637350 | Zbl: 0462.10029
, ,[10] Power free values of polynomials. Mathematika 23 (1976), 159-183. | MR: 429801 | Zbl: 0349.10039
,[11] Remark on a paper of Stux concerning squarefree numbers in non-linear sequences. Pacific J. Math. 78 (1978), 241-242. | MR: 513296 | Zbl: 0395.10049
,[12] Über die Verteilung der Primzahlen in Folgen der Form [f(n +x)]. Acta Arith. 35 (1979), 117-174. | MR: 547671 | Zbl: 0342.10027
,[13] Squarefree integers in non-linear sequences. Pacific J. math. 123 (1986), 223-225. | MR: 834150 | Zbl: 0562.10017
,[14] Lattice problems of many-dimensional hyperboloids II. Acta Arith. 37 (1963), 173-204. | MR: 153641 | Zbl: 0118.28201
,[15] Distribution of squarefree integers in non-linear sequences. Pacific J. Math. 59 (1975), 577-584. | MR: 387218 | Zbl: 0297.10033
,[16] Some extremal problems in Fourier analysis. Bull. Amer. Math. Soc. 12 (1985), 183-216. | Zbl: 0575.42003
,Cited by Sources: