Fractions continues hermitiennes et billard hyperbolique
Journal de Théorie des Nombres de Bordeaux, Tome 10 (1998) no. 1, pp. 1-15.

Nous proposons de formaliser une méthode d’approximation diophantienne dans en considérant l’action de PGL 2 () sur le demi-plan complexe. On retrouvera le thème classique de la connexion entre développement en fractions continues et flots géodésiques modélisé ici par un billard hyperbolique.

The purpose of this paper is to describe a dynamical system (X,T) associated to the Hermite algorithm for the continued fraction expansion of real numbers. It is related to trajectories in hyperbolic billiards. We prove the ergodicity of T and we deduce some results.

@article{JTNB_1998__10_1_1_0,
     author = {Meignen, Pierrick},
     title = {Fractions continues hermitiennes et billard hyperbolique},
     journal = {Journal de Th\'eorie des Nombres de Bordeaux},
     pages = {1--15},
     publisher = {Universit\'e Bordeaux I},
     volume = {10},
     number = {1},
     year = {1998},
     doi = {10.5802/jtnb.215},
     zbl = {0927.11045},
     mrnumber = {1827282},
     language = {fr},
     url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.215/}
}
Pierrick Meignen. Fractions continues hermitiennes et billard hyperbolique. Journal de Théorie des Nombres de Bordeaux, Tome 10 (1998) no. 1, pp. 1-15. doi : 10.5802/jtnb.215. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.215/

[1] R. Adler, L. Flatto, Cross section maps for geodesic flows, Ergodic Theory and Dynamical Systems, Progress in Math. 2, (ed. A. Katok, Birkhäuser, Boston, 1980), 103-161. | MR 670077 | Zbl 0496.58009

[2] N. Bourbaki, Groupes et algèbres de Lie, Ch. 4-6, Hermann, Paris, 1968. | MR 240238 | Zbl 0483.22001

[3] L.R. Ford, Rational approximations to irrational complex numbers, Trans. Amer. Math. Soc. 19 (1918), 1-42. | JFM 46.0275.04 | MR 1501085

[4] E. Hopf, Ergodic theory and the geodesic flow on surfaces of constant negative curvature, Bull. Amer. Math. Soc. 77 (1971), 863-877. | MR 284564 | Zbl 0227.53003

[5] G. Humbert, Sur la méthode d'approximation d'Hermite, Journal de Maths, 2, (1916), 79-103. | JFM 46.0271.03

[6] P. Meignen, Groupes de Coxeter et approximation diophantienne, Thèse de l'Université de Caen, France, 1995.

[7] P. Meignen, Generating series for the Coxeter groups and applications, à paraître dans Contributions to Algebra and Geometry. | MR 1614425 | Zbl 0890.20029

[8] R. Moeckel, Geodesics on modular surfaces and continued fractions, Ergo. Th. and Dynam. Sys 2 (1982), 69-84. | MR 684245 | Zbl 0497.10007

[9] C. Series, Geometrical Markov coding of geodesics on surfaces of constant negative curvature, Ergo. Th. and Dynam. Sys 6 (1986), 601-625. | MR 873435 | Zbl 0593.58033

[10] C. Series, The modular surface and continued fractions, J. London Math. Soc. 31 (1985), 69-80. | MR 810563 | Zbl 0545.30001

[11] Ya. G. Sinai, Dynamical systems II, Encyclopedia of Maths. Sciences, 2, Springer-Verlag, Berlin Heidelberg, 1989. | Zbl 0778.00014

[12] Ya. G. Sinai, Geodesic flows on manifolds of constant negative curvature, Dokl. Akad. Nauk. SSSR 131 (1960), 752-755; Soviet Math. Dokl. 1 (1960), 335-339. | MR 132997 | Zbl 0129.31102

[13] E.B. Vinberg, Geometry II, Encyclopedia of Maths. Sciences, 29, Springer-Verlag, Berlin Heidelberg, 1993. | MR 1254931 | Zbl 0786.00008