Let where denotes the number of subgroups of all abelian groups whose order does not exceed and whose rank does not exceed , and is the error term. It is proved that
Soit où désigne le nombre de sous groupes des groupes abéliens dont l’ordre n’excède pas et dont le rang n’excède pas , et est le terme d’erreur. On démontre que
@article{JTNB_1997__9_2_371_0, author = {Aleksandar Ivi\'c}, title = {On the number of subgroups of finite abelian groups}, journal = {Journal de Th\'eorie des Nombres de Bordeaux}, pages = {371--381}, publisher = {Universit\'e Bordeaux I}, volume = {9}, number = {2}, year = {1997}, doi = {10.5802/jtnb.208}, zbl = {0905.11040}, mrnumber = {1617404}, language = {en}, url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.208/} }
TY - JOUR TI - On the number of subgroups of finite abelian groups JO - Journal de Théorie des Nombres de Bordeaux PY - 1997 DA - 1997/// SP - 371 EP - 381 VL - 9 IS - 2 PB - Université Bordeaux I UR - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.208/ UR - https://zbmath.org/?q=an%3A0905.11040 UR - https://www.ams.org/mathscinet-getitem?mr=1617404 UR - https://doi.org/10.5802/jtnb.208 DO - 10.5802/jtnb.208 LA - en ID - JTNB_1997__9_2_371_0 ER -
Aleksandar Ivić. On the number of subgroups of finite abelian groups. Journal de Théorie des Nombres de Bordeaux, Volume 9 (1997) no. 2, pp. 371-381. doi : 10.5802/jtnb.208. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.208/
[1] Average order of certain functions connected with arithmetic of matrices, J. Indian Math. Soc. 59 (1993), 97-106. | MR: 1248950 | Zbl: 1015.11511
,[2] On the number of subgroups of finite Abelian groups, Abh. Math. Sem. Univ. Hamburg, in press. | MR: 1481529 | Zbl: 0890.11027
and ,[3] On the asymptotic behaviour of the number of subgroups of finite abelian groups, Archiv der Mathematik 69 (1997), 95-104. | MR: 1458695 | Zbl: 0907.11030
and ,[4] The Riemann zeta-function, John Wiley & Sons, New York (1985). | MR: 792089 | Zbl: 0556.10026
,[5] The general divisor problem, J. Number Theory 27 (1987), 73-91. | MR: 904009 | Zbl: 0619.10040
,[6] Divisor problems of 4 and 3 dimensions, Acta Arith. 73 (1995), 249-269. | MR: 1364462 | Zbl: 0846.11056
,[7] On the number of subgroups of finite Abelian groups, Proc. Conf. Analytic and Elementary Number Theory (Vienna, July 18-20, 1996), Universität Wien & Universität für Bodenkultur, Eds. W.G. Nowak and J. Schoißengeier, Wien (1996), 181-188. | Zbl: 0879.11049
,[8] Progress towards a conjecture on the mean value of Titchmarsh series, Recent Progress in Analytic Number Theory, Academic Press, London 1 (1981), 303-318. | MR: 637354 | Zbl: 0465.10033
,[9] On the Mean- Value and Omega-Theorems for the Riemann zeta-function, Tata Institute of Fund. Research, Bombay, 1995. | MR: 1332493 | Zbl: 0845.11003
,Cited by Sources: