The Josephus problem
Journal de Théorie des Nombres de Bordeaux, Volume 9 (1997) no. 2, pp. 303-318.

We give explicit non-recursive formulas to compute the Josephus-numbers j(n,2,i) and j(n,3,i) and explicit upper and lower bounds for j(n,k,i) (where k4) which differ by 2k-2 (for k=4 the bounds are even better). Furthermore we present a new fast algorithm to calculate j(n,k,i) which is based upon the mentioned bounds.

Nous donnons des formules explicites permettant de calculer les nombres de Josephus j(n,2,i) and j(n,3,i) et fournissant une majoration et une minoration explicites de j(n,k,i) qui ne diffèrent que d’au plus 2k-2 (dans le cas k=4, ces bornes sont même meilleures). Nous proposons aussi un nouvel algorithme pour le calcul de ces nombres basé précisément sur ces estimations.

@article{JTNB_1997__9_2_303_0,
     author = {Lorenz Halbeisen and Norbert Hungerb\"uhler},
     title = {The {Josephus} problem},
     journal = {Journal de Th\'eorie des Nombres de Bordeaux},
     pages = {303--318},
     publisher = {Universit\'e Bordeaux I},
     volume = {9},
     number = {2},
     year = {1997},
     doi = {10.5802/jtnb.204},
     zbl = {0905.05002},
     mrnumber = {1617400},
     language = {en},
     url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.204/}
}
TY  - JOUR
TI  - The Josephus problem
JO  - Journal de Théorie des Nombres de Bordeaux
PY  - 1997
DA  - 1997///
SP  - 303
EP  - 318
VL  - 9
IS  - 2
PB  - Université Bordeaux I
UR  - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.204/
UR  - https://zbmath.org/?q=an%3A0905.05002
UR  - https://www.ams.org/mathscinet-getitem?mr=1617400
UR  - https://doi.org/10.5802/jtnb.204
DO  - 10.5802/jtnb.204
LA  - en
ID  - JTNB_1997__9_2_303_0
ER  - 
%0 Journal Article
%T The Josephus problem
%J Journal de Théorie des Nombres de Bordeaux
%D 1997
%P 303-318
%V 9
%N 2
%I Université Bordeaux I
%U https://doi.org/10.5802/jtnb.204
%R 10.5802/jtnb.204
%G en
%F JTNB_1997__9_2_303_0
Lorenz Halbeisen; Norbert Hungerbühler. The Josephus problem. Journal de Théorie des Nombres de Bordeaux, Volume 9 (1997) no. 2, pp. 303-318. doi : 10.5802/jtnb.204. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.204/

[1] Burde, K.: "Das Problem der Abzählreime und Zahlenentwicklungen mit gebrochenen Basen". J. of Number Theory 26 (1987), 192-209 | MR: 889384 | Zbl: 0622.10005

[2] Jakóbczyk, F.: "On the generalized Josephus problem". Glasgow Math. J. 14 (1973),168-173 | MR: 327527 | Zbl: 0278.05007

[3] Josephus, F.: "The jewish war, Book III". Translated by H. S. Thackeray, Heinemann (1927), 341-366, 387-391

[4] Nörlund, N.E.: "Vorlesungen über Differenzenrechnung", Grundlehren d. math. Wissensch. 13, Springer, Berlin 1924 | JFM: 50.0315.02

[5] Robinson, W.J.: "The Josephus problem". Math. Gazette 44 (1960), 47-52 | MR: 117163

[6] Rouse Ball, W.W.: "Mathematical recreations and essays". Reprint New York (1962), 32-36 | JFM: 52.0072.01

[7] Woodhouse, D.: "The extended Josephus problem". Rev. Mat. Hisp.-Amer. (4) 33 (1973), 207-218 | MR: 330037 | Zbl: 0299.05007

Cited by Sources: