Let denote the minimum cardinality of a ternary code of length and covering radius one. In a previous paper, we improved on the lower bound by showing that . In this note, we prove that .
Notons le cardinal minimal d’un code ternaire de longueur et de rayon de recouvrement un. Dans un précédent article, nous avons amélioré la minoration en montrant que . Dans cette note, nous prouvons que .
@article{JTNB_1996__8_2_481_0, author = {Laurent Habsieger}, title = {A new lower bound for the football pool problem for $7$ matches}, journal = {Journal de Th\'eorie des Nombres de Bordeaux}, pages = {481--484}, publisher = {Universit\'e Bordeaux I}, volume = {8}, number = {2}, year = {1996}, doi = {10.5802/jtnb.183}, zbl = {0866.94027}, mrnumber = {1438484}, language = {en}, url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.183/} }
TY - JOUR TI - A new lower bound for the football pool problem for $7$ matches JO - Journal de Théorie des Nombres de Bordeaux PY - 1996 DA - 1996/// SP - 481 EP - 484 VL - 8 IS - 2 PB - Université Bordeaux I UR - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.183/ UR - https://zbmath.org/?q=an%3A0866.94027 UR - https://www.ams.org/mathscinet-getitem?mr=1438484 UR - https://doi.org/10.5802/jtnb.183 DO - 10.5802/jtnb.183 LA - en ID - JTNB_1996__8_2_481_0 ER -
Laurent Habsieger. A new lower bound for the football pool problem for $7$ matches. Journal de Théorie des Nombres de Bordeaux, Volume 8 (1996) no. 2, pp. 481-484. doi : 10.5802/jtnb.183. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.183/
[1] Lower bounds for q-ary covering codes, IEEE Trans. Inform. Theory 36 (1990), 664-671. | MR: 1053861 | Zbl: 0703.94014
,[2] Covering radius 1985-1994, preprint.
, , and ,[3] Lower bounds for q-ary coverings by spheres of radius one, J. Combin. Theory Ser. A 67 (1994), 199-222. | MR: 1284408 | Zbl: 0815.94021
,[4] Binary codes with covering radius one: some new lower bounds, Discrete Mathematics, to appear. | MR: 1477282 | Zbl: 0898.94016
,Cited by Sources: