We construct a Markov normal sequence with a discrepancy of . The estimation of the discrepancy was previously known to be .
On construit une suite normale de Markov dont la discrépance est , améliorant en cela un résultat donnant l’estimation .
@article{JTNB_1996__8_2_413_0, author = {M. B. Levin}, title = {On the discrepancy of {Markov-normal} sequences}, journal = {Journal de Th\'eorie des Nombres de Bordeaux}, pages = {413--428}, publisher = {Universit\'e Bordeaux I}, volume = {8}, number = {2}, year = {1996}, doi = {10.5802/jtnb.178}, zbl = {0916.11044}, mrnumber = {1438479}, language = {en}, url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.178/} }
TY - JOUR TI - On the discrepancy of Markov-normal sequences JO - Journal de Théorie des Nombres de Bordeaux PY - 1996 DA - 1996/// SP - 413 EP - 428 VL - 8 IS - 2 PB - Université Bordeaux I UR - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.178/ UR - https://zbmath.org/?q=an%3A0916.11044 UR - https://www.ams.org/mathscinet-getitem?mr=1438479 UR - https://doi.org/10.5802/jtnb.178 DO - 10.5802/jtnb.178 LA - en ID - JTNB_1996__8_2_413_0 ER -
M. B. Levin. On the discrepancy of Markov-normal sequences. Journal de Théorie des Nombres de Bordeaux, Volume 8 (1996) no. 2, pp. 413-428. doi : 10.5802/jtnb.178. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.178/
[1] A Markov sequence of symbols and a normal continued fraction, Izv. Akad. Nauk SSSR, Ser. Mat., 1957, v.21, 501-514. | MR: 101856 | Zbl: 0078.31102
and ,[2] Normal sequences for Markov shifts and intrinsically ergodic subshifts, Israel Journal of Mathematics, 1987, v.59, 225-233. | MR: 920084 | Zbl: 0643.10041
and ,[3] Points generiques de Champernowne sur certains systems codes; application aux θ-shifts, Ergod. Th. & Dynam. Sys.,1988, v. 8, 35-51. | Zbl: 0657.28014
,[4] Pseudorandom numbers for modeling Markov chains, U.S.S.R. Comput. Maths. Math. Phis., 1967, vol. 7, no 3, 218-233. | Zbl: 0181.45105
,[5] Exponential sums and their applications, Dordrecht, 1992, 209 pages. | MR: 1162539 | Zbl: 0754.11022
,[6] Imitation of simplist Markov processes, Izv. Akad. Nauk SSSR, Ser. Mathem., 1959, v.23, 815-822. | MR: 114241
,[7] The construction of sequence of signs that is normal in the sen se of Markov, Moskovskii Gosudarstvennyi Pedagogiceskii institute im. V.I. Lenina, Ucenye Zapiski, 1971, v. 375,143-155.
,[8] An Introduction to Probability Theory and Its Applications, vol.1, New York, 1965. | Zbl: 0039.13201
,[9] Finite Markov chains, New York, 1960, 210 pages. | MR: 115196 | Zbl: 0089.13704
and ,[10] Computing methods, vol. 2, Pergamon Press, Oxford, 1965, 267, 268. | Zbl: 0122.12903
and ,[11] Distribution of fractional parts of exponential function, Vestnic Moskov. Univ.,Ser.1 Mat. Meh., 1966, v. 21, no. 4, 42-46. | MR: 197435 | Zbl: 0154.04801
,[12] The distribution of fractional parts of the exponential function, Soviet. Math. (Iz. Vuz.), 1977, v. 21, no.11, 41-47. | MR: 506058 | Zbl: 0389.10037
,[13] Some bounds in the construction of Bernoulli-normal sequences of signs, Math. Notes, 1971, v. 10, 724-730. | Zbl: 0248.65071
,[14] On normal sequence for Markov and Bernoulli shifts, 49-53, Proccedings of the Israel Mathematical Union Conference,1994, Beer Sheva, 97-100.
,[15] Limit theorems for lacunary series and uniform distribution mod 1, Acta Arithm., 1975, v. 26, 241-251. | MR: 379420 | Zbl: 0263.10020
,Cited by Sources: