A limit theorem in the space of continuous functions for the Dirichlet polynomial where denote the coefficients of the Dirichlet series expansion of the function in the half-plane , and , 1n and as , is proved.
Dans cet article on prouve un théorème limite dans l’espace des fonctions continues pour le polynôme de Dirichlet où sont les coefficients du développement en série de Dirichlet de la fonction dans le demi-plan , , , , et lorsque
@article{JTNB_1996__8_2_315_0, author = {Antanas Laurin\v{c}ikas}, title = {Limit theorem in the space of continuous functions for the {Dirichlet} polynomial related with the {Riemann} zeta-funtion}, journal = {Journal de Th\'eorie des Nombres de Bordeaux}, pages = {315--329}, publisher = {Universit\'e Bordeaux I}, volume = {8}, number = {2}, year = {1996}, doi = {10.5802/jtnb.171}, zbl = {0871.11059}, mrnumber = {1438472}, language = {en}, url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.171/} }
TY - JOUR TI - Limit theorem in the space of continuous functions for the Dirichlet polynomial related with the Riemann zeta-funtion JO - Journal de Théorie des Nombres de Bordeaux PY - 1996 DA - 1996/// SP - 315 EP - 329 VL - 8 IS - 2 PB - Université Bordeaux I UR - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.171/ UR - https://zbmath.org/?q=an%3A0871.11059 UR - https://www.ams.org/mathscinet-getitem?mr=1438472 UR - https://doi.org/10.5802/jtnb.171 DO - 10.5802/jtnb.171 LA - en ID - JTNB_1996__8_2_315_0 ER -
%0 Journal Article %T Limit theorem in the space of continuous functions for the Dirichlet polynomial related with the Riemann zeta-funtion %J Journal de Théorie des Nombres de Bordeaux %D 1996 %P 315-329 %V 8 %N 2 %I Université Bordeaux I %U https://doi.org/10.5802/jtnb.171 %R 10.5802/jtnb.171 %G en %F JTNB_1996__8_2_315_0
Antanas Laurinčikas. Limit theorem in the space of continuous functions for the Dirichlet polynomial related with the Riemann zeta-funtion. Journal de Théorie des Nombres de Bordeaux, Volume 8 (1996) no. 2, pp. 315-329. doi : 10.5802/jtnb.171. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.171/
[1] Über die Wertverteilung der Riemannschen Zeta funktion, Ernste Mitteilung, Acta Math. 51 (1930), 1-35. | JFM: 56.0287.01
and ,[2] Über die Wertverteilung der Riemannschen Zeta funktion, Zweite Mitteilung, Acta Math. 58 (1932),1-55. | JFM: 58.0321.02 | Zbl: 0003.38901
and ,[3] Distribution functions and the Riemann zeta-function, Trans.Amer.Math.Soc. 38 (1935), 48-88. | JFM: 61.0462.03 | MR: 1501802 | Zbl: 0014.15401
and ,[4] Mean motions and values of the Riemann zeta-function, Acta Math. 80 (1948), 97-166. | MR: 27796 | Zbl: 0038.23201
and ,[5] Limit theorems for the Riemann zeta-function on the complex space, Prob. Theory and Math. Stat., 2, Proceedings of the Fifth Vilnius Conference, VSP/Mokslas (1990), 59-69. | MR: 1153860 | Zbl: 0733.11030
,[7] Distribution of values of complex-valued functions, Litovsk. Math. Sb. 15 Nr.2 (1975), 25-39, (in Russian); English transl. in Lithuanian Math. J., 15, 1975. | MR: 384720 | Zbl: 0311.10047
,[8] Distribution Theorems for L-functions, John Wiley (986). | Zbl: 0609.10032
,[9] A limit theorem for the Riemann zeta-function close to the critical line. II, Mat. Sb., 180, 6 (1989), 733-+749, (in Russian); English transl. in Math. USSR Sbornik, 67, 1990. | MR: 1015037 | Zbl: 0703.11037
,[10] A limit theorem for the Riemann zeta-function in the complex space, Acta Arith. 53 (1990), 421-432. | MR: 1075034 | Zbl: 0713.11057
,[11] Fractional moments of the Riemann zeta-function, J.London Math. Soc. 24(2) (1981), 65-78. | MR: 623671 | Zbl: 0431.10024
,[12] The Riemann zeta-function John Wiley, 1985. | MR: 792089 | Zbl: 0556.10026
,[13] Convergence of Probability Measures, John Wiley, 1968. | MR: 233396 | Zbl: 0172.21201
,[14] Probability measures on locally compact groups, Springer-Verlag, Berlin-Heidelberg- New York (1977). | MR: 501241 | Zbl: 0376.60002
,[15] Hilbert's inequality, J. London Math. Soc. 8(2) (1974), 73-82. | MR: 337775 | Zbl: 0281.10021
and ,Cited by Sources: