@article{JTNB_1995__7_1_143_0, author = {Shoichi Nakajima}, title = {On {Gauss} sum characters of finite groups and generalized {Bernoulli} numbers}, journal = {Journal de Th\'eorie des Nombres de Bordeaux}, pages = {143--154}, publisher = {Universit\'e Bordeaux I}, volume = {7}, number = {1}, year = {1995}, doi = {10.5802/jtnb.137}, zbl = {0848.11052}, mrnumber = {1413573}, language = {en}, url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.137/} }
TY - JOUR TI - On Gauss sum characters of finite groups and generalized Bernoulli numbers JO - Journal de Théorie des Nombres de Bordeaux PY - 1995 DA - 1995/// SP - 143 EP - 154 VL - 7 IS - 1 PB - Université Bordeaux I UR - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.137/ UR - https://zbmath.org/?q=an%3A0848.11052 UR - https://www.ams.org/mathscinet-getitem?mr=1413573 UR - https://doi.org/10.5802/jtnb.137 DO - 10.5802/jtnb.137 LA - en ID - JTNB_1995__7_1_143_0 ER -
Shoichi Nakajima. On Gauss sum characters of finite groups and generalized Bernoulli numbers. Journal de Théorie des Nombres de Bordeaux, Volume 7 (1995) no. 1, pp. 143-154. doi : 10.5802/jtnb.137. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.137/
[1] Über das Verhalten der Integrale erster Gattung bei Automorphismen des Funktionenkörpers, Abh. Math. Sem. Hamburg Univ. 10 (1934), 358-361, : Collected Papers, vol. I, 68-71. | JFM: 60.0098.01 | Zbl: 0009.16001
and ,[2] Über das Verhalten der Modulfunktionen von Primzahlstufe bei beliebigen Modulsubstitutionen, Abh. Math. Sem. Hamburg Univ. 8 (1931), 323-347. | JFM: 57.0445.01 | Zbl: 0002.19804
,[3] Algebraic Geometry, Springer Verlag, New York-Heidelberg -Berlin, 1977. | MR: 463157 | Zbl: 0367.14001
,[4] Representations of the finite symplectic group Sp(4, Fp) in the spaces of Siegel modular forms, Contemporary Math. 53 (1986), 253-276. | Zbl: 0592.10024
,[5] Vorlesungen über Zahlentheorie, zweite Auflage, Springer Verlag, Berlin-Gottingen- Heidelberg-New York, 1964. | MR: 188128
,[6] Mathematische Werke, zweite Auflage, Vandenhoeck & Ruprecht, Göttingen, 1970. | MR: 371577 | Zbl: 0205.28902
,[7] On the evaluation of Gaussian sums for non-primitive Dirichlet characters, L'enseignement math. 23 (1977), 13-18. | MR: 441888 | Zbl: 0352.10018
,[8] A generalization of a theorem of Hecke, Amer. J. Math. 84 (1962), 306-316. | MR: 141644 | Zbl: 0114.02503
,[9] Galois module structure of cohomology groups for tamely ramified coverings of algebraic varieties, J. Number Theory 22 (1986), 115-123. | MR: 821138 | Zbl: 0602.14017
,[10] Action of finite groups on the holomorphic differentials of Riemann surfaces and the class numbers of imaginary quadratic fields, Reports of Number Theory Symposium, Osaka in Japanese (1989), 37-42.
,[11] On the representation of SL2 (Fq) in the space of Hilbert modular forms, J. Math. Kyoto Univ. 15 (1975), 101-128. | MR: 384706 | Zbl: 0305.10022
,[12] Linear Representations of Finite Groups, Springer Verlag, Berlin Heidelberg- New York, 1977. | MR: 450380 | Zbl: 0355.20006
,[13] On the construction of Galois extensions of function fields and number fields, Math. Ann. 207 (1974), 99-120. | MR: 332725 | Zbl: 0279.12102
,[14] Die Darstellung der inhomogenen Modulargruppe mod qn durch die ganzen Modulformen gerader Dimension, Math. Ann. 111 (1935), 329-354. | JFM: 61.0110.03 | MR: 1512999 | Zbl: 0012.10101
,[15] Introduction to cyclotomic fields, Springer Verlag, New York-Heidelberg -Berlin, 1982. | MR: 718674 | Zbl: 0484.12001
,[16] Über Matrizenringe auf Riemannschen flächen und den Riemann-Rochschen Satz, Abh. Math. Sem. Hamburg Univ. 11 (1935), 110-115, : Collected Papers, I,80-85. | JFM: 61.0123.01 | Zbl: 0011.12203
,[17] PSL2(Zp) and the Atiyah-Bott fixed-point theorem, Houston J. Math. 6 (1980), 427-430. ' | MR: 597780 | Zbl: 0463.10016
,Cited by Sources: