In this paper, we consider the theory of Kolyvagin systems when and show that this theory still works in a certain setting that has been excluded in previous studies. As an application of this result, we prove a conjecture of Kurihara concerning modular symbols in the case .
Dans cet article, nous considérons la théorie des systèmes de Kolyvagin lorsque et montrons que cette théorie fonctionne toujours dans un certain cadre qui a été exclu dans les études précédentes. Comme application de ce résultat, nous prouvons une conjecture de Kurihara concernant les symboles modulaires dans le cas .
Revised:
Accepted:
Published online:
Keywords: Kolyvagin systems, modular symbols, Kurihara conjecture
Ryotaro Sakamoto 1
CC-BY-ND 4.0
@article{JTNB_2024__36_3_919_0,
author = {Ryotaro Sakamoto},
title = {The theory of {Kolyvagin} systems for $p=3$},
journal = {Journal de th\'eorie des nombres de Bordeaux},
pages = {919--946},
year = {2024},
publisher = {Soci\'et\'e Arithm\'etique de Bordeaux},
volume = {36},
number = {3},
doi = {10.5802/jtnb.1300},
language = {en},
url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1300/}
}
TY - JOUR AU - Ryotaro Sakamoto TI - The theory of Kolyvagin systems for $p=3$ JO - Journal de théorie des nombres de Bordeaux PY - 2024 SP - 919 EP - 946 VL - 36 IS - 3 PB - Société Arithmétique de Bordeaux UR - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1300/ DO - 10.5802/jtnb.1300 LA - en ID - JTNB_2024__36_3_919_0 ER -
%0 Journal Article %A Ryotaro Sakamoto %T The theory of Kolyvagin systems for $p=3$ %J Journal de théorie des nombres de Bordeaux %D 2024 %P 919-946 %V 36 %N 3 %I Société Arithmétique de Bordeaux %U https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1300/ %R 10.5802/jtnb.1300 %G en %F JTNB_2024__36_3_919_0
Ryotaro Sakamoto. The theory of Kolyvagin systems for $p=3$. Journal de théorie des nombres de Bordeaux, Volume 36 (2024) no. 3, pp. 919-946. doi: 10.5802/jtnb.1300
[1] On the theory of higher rank Euler, Kolyvagin and Stark systems, II | arXiv
[2] On the theory of higher rank Euler, Kolyvagin and Stark systems, Int. Math. Res. Not., Volume 2021 (2021) no. 13, pp. 10118-10206 | DOI | MR | Zbl
[3] Kolyvagin systems of Stark units, J. Reine Angew. Math., Volume 631 (2009), pp. 85-107 | DOI | MR | Zbl
[4] Stark units and the main conjectures for totally real fields, Compos. Math., Volume 145 (2009) no. 5, pp. 1163-1195 | DOI | MR | Zbl
[5] -adic Kolyvagin systems, Int. Math. Res. Not., Volume 2011 (2011) no. 14, pp. 3141-3206 | DOI | MR | Zbl
[6] Stickelberger elements and Kolyvagin systems, Nagoya Math. J., Volume 203 (2011), pp. 123-173 | DOI | MR | Zbl
[7] Main conjectures for CM fields and a Yager-type theorem for Rubin-Stark elements, Int. Math. Res. Not., Volume 2014 (2014) no. 21, pp. 5832-5873 | DOI | MR | Zbl
[8] Deformations of Kolyvagin systems, Ann. Math. Qué., Volume 40 (2016) no. 2, pp. 251-302 | DOI | MR | Zbl
[9] On the Iwasawa theory of CM fields for supersingular primes, Trans. Am. Math. Soc., Volume 370 (2018) no. 2, pp. 927-966 | DOI | MR | Zbl
[10] Coleman-adapted Rubin-Stark Kolyvagin systems and supersingular Iwasawa theory of CM abelian varieties, Proc. Lond. Math. Soc. (3), Volume 111 (2015) no. 6, pp. 1338-1378 | DOI | MR | Zbl
[11] Elliptic curves with 3-adic Galois representation surjective mod 3 but not mod 9 (2006) | arXiv
[12] -adic Hodge theory and values of zeta functions of modular forms, Cohomologies -adiques et applications arithmétiques. III (Astérisque), Volume 295, Société Mathématique de France, 2004, pp. 117-290 | MR | Numdam | Zbl
[13] The structure of Selmer groups and the Iwasawa main conjecture for elliptic curves (2022) | arXiv
[14] The structure of Selmer groups of elliptic curves and modular symbols, Iwasawa theory 2012 (Contributions in Mathematical and Computational Sciences), Volume 7, Springer, 2014, pp. 317-356 | MR | DOI | Zbl
[15] Parabolic points and zeta functions of modular curves, Izv. Akad. Nauk SSSR, Ser. Mat., Volume 36 (1972), pp. 19-66 | MR | Zbl
[16] Commutative ring theory, Cambridge Studies in Advanced Mathematics, 8, Cambridge University Press, 1989, xiv+320 pages (translated from the Japanese by M. Reid) | MR
[17] Kolyvagin systems, Mem. Am. Math. Soc., Volume 168 (2004) no. 799, p. viii+96 | DOI | MR | Zbl
[18] Controlling Selmer groups in the higher core rank case, J. Théor. Nombres Bordeaux, Volume 28 (2016) no. 1, pp. 145-183 | MR | DOI | Numdam | Zbl
[19] Refined class number formulas for , J. Théor. Nombres Bordeaux, Volume 28 (2016) no. 1, pp. 185-211 | MR | DOI | Zbl
[20] Images of mod Galois representations associated to elliptic curves, Can. Math. Bull., Volume 44 (2001) no. 3, pp. 313-322 | DOI | MR | Zbl
[21] Euler systems. (Hermann Weyl Lectures), Annals of Mathematics Studies, 147, Princeton University Press, 2000, xii+227 pages | DOI | MR
[22] Stark systems over Gorenstein local rings, Algebra Number Theory, Volume 12 (2018) no. 10, pp. 2295-2326 | DOI | MR | Zbl
[23] On the theory of higher rank Euler, Kolyvagin and Stark systems: a research announcement, RIMS Kôkyûroku Bessatsu, Volume B83 (2020), pp. 141-159 | MR | Zbl
[24] On the theory of Kolyvagin systems of rank 0, J. Théor. Nombres Bordeaux, Volume 33 (2021) no. 3, pp. 1077-1102 | DOI | MR | Numdam | Zbl
[25] -Selmer group and modular symbols, Doc. Math., Volume 27 (2022), pp. 1891-1922 | MR | DOI | Zbl
[26] The Iwasawa main conjectures for , Invent. Math., Volume 195 (2014) no. 1, pp. 1-277 | DOI | MR | Zbl
[27] On -adic representations and congruences for coefficients of modular forms, Modular functions of one variable, III (Proc. Internat. Summer School, Univ. Antwerp, Antwerp, 1972) (Lecture Notes in Mathematics), Volume 350, Springer, 1973, pp. 1-55 | MR | Zbl
Cited by Sources: