Suppose is -dimensional local field of characteristic , is the maximal quotient of period and nilpotent class of , and is such that . We use nilpotent Artin–Schreier theory to identify with the group obtained from a profinite Lie -algebra via the Campbell–Hausdorff composition law. The canonical -topology on is used to define a dense Lie subalgebra in . The algebra can be provided with a system of -topological generators and we prove that all -dimensional extensions of in are in the bijection with all -open subalgebras of by the Galois correspondence. These results are applied to higher local fields of characteristic 0 containing a nontrivial -th root of unity. If we introduce similarly the quotient and present it in the form , where is a suitable profinite Lie -algebra. Then we introduce a dense -Lie subalgebra in , and describe the structure of in terms of generators and relations. The general result is illustrated by explicit presentation of modulo subgroup of third commutators.
Soit un corps local de dimension et de caractéristique On note le quotient maximal de de période et de classe de nilpotence Soit tel que . On utilise la théorie nilpotente d’Artin–Schreier pour identifier avec le groupe obtenu à partir d’une -algèbre de Lie via la loi de composition de Campbell–Hausdorff. On utilise la topologie canonique sur dite -topologie pour définir une sous-algèbre de Lie dense dans . L’algèbre peut être munie d’un système de générateurs topologiques et nous prouvons que la correspondance de Galois établit une bijection entre les extensions -dimensionnelles de dans et les -sous-algèbres ouvertes de Ces résultats sont appliqués aux corps locaux supérieurs de caractéristique 0 contenant une racine -ième primitive de l’unité. Si on introduit de la même manière le quotient de et on le présente sous la forme , où est une -algèbre de Lie profinie appropriée. On introduit ensuite une -sous-algèbre de Lie dense dans et on décrit la structure de en termes de générateurs et relations. Le résultat général est illustré par une présentation explicite de modulo le sous-groupe engendré par les -commutateurs.
Accepted:
Published online:
DOI: 10.5802/jtnb.1293
Keywords: Local field, Galois group
Victor Abrashkin 1, 2
CC-BY-ND 4.0
@article{JTNB_2024__36_2_671_0,
author = {Victor Abrashkin},
title = {Galois groups of $p$-extensions of higher local fields},
journal = {Journal de th\'eorie des nombres de Bordeaux},
pages = {671--724},
year = {2024},
publisher = {Soci\'et\'e Arithm\'etique de Bordeaux},
volume = {36},
number = {2},
doi = {10.5802/jtnb.1293},
mrnumber = {4830947},
zbl = {07948982},
language = {en},
url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1293/}
}
TY - JOUR AU - Victor Abrashkin TI - Galois groups of $p$-extensions of higher local fields JO - Journal de théorie des nombres de Bordeaux PY - 2024 SP - 671 EP - 724 VL - 36 IS - 2 PB - Société Arithmétique de Bordeaux UR - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1293/ DO - 10.5802/jtnb.1293 LA - en ID - JTNB_2024__36_2_671_0 ER -
%0 Journal Article %A Victor Abrashkin %T Galois groups of $p$-extensions of higher local fields %J Journal de théorie des nombres de Bordeaux %D 2024 %P 671-724 %V 36 %N 2 %I Société Arithmétique de Bordeaux %U https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1293/ %R 10.5802/jtnb.1293 %G en %F JTNB_2024__36_2_671_0
Victor Abrashkin. Galois groups of $p$-extensions of higher local fields. Journal de théorie des nombres de Bordeaux, Volume 36 (2024) no. 2, pp. 671-724. doi: 10.5802/jtnb.1293
[1] Ramification filtration of the Galois group of a local field, Proceedings of the St. Petersburg Mathematical Society. Vol. III (Translations. Series 2. American Mathematical Society), Volume 166, American Mathematical Society, 1995, pp. 35-100 | Zbl
[2] Ramification filtration of the Galois group of a local field. II, Number theory, algebra and algebraic geometry (Proceedings of the Steklov Institute of Mathematics), Volume 208, Maik Nauka/Interperiodica Publishing, 1995, pp. 18-69 | Zbl
[3] On a local analogue of the Grothendieck Conjecture, Int. J. Math., Volume 11 (2000) no. 2, pp. 133-175 | DOI | Zbl | MR
[4] Ramification theory for higher dimensional fields, Algebraic number theory and algebraic geometry (Contemporary Mathematics), Volume 300, American Mathematical Society, 2002, pp. 1-16 | DOI | Zbl
[5] An analogue of the Grothendieck conjecture for two-dimensional local fields of finite characteristic, Number theory, algebra, and algebraic geometry (Proceedings of the Steklov Institute of Mathematics), Volume 241, Maik Nauka/Interperiodika, 2003, pp. 2-34 | Zbl
[6] An analogue of the field-of-norms functor and of the Grothendieck conjecture, J. Algebr. Geom., Volume 16 (2007) no. 4, pp. 671-730 | Zbl | DOI | MR
[7] Modified proof of a local analogue of the Grothendieck Conjecture, J. Théor. Nombres Bordeaux, Volume 22 (2010) no. 1, pp. 1-50 | Zbl | DOI | Numdam | MR
[8] Galois groups of local fields, Lie algebras and ramification, Arithmetic and geometry (London Mathematical Society Lecture Note Series), Volume 420, Cambridge University Press, 2015, pp. 1-23 | Zbl
[9] Groups of automorphisms of local fields of period and nilpotent class . I, Int. J. Math., Volume 28 (2017) no. 6, 1750043, 34 pages | Zbl
[10] Groups of automorphisms of local fields of period and nilpotent class . II, Int. J. Math., Volume 28 (2017) no. 10, 1750066, 32 pages | Zbl | MR
[11] Ramification filtration via deformations, Sb. Math., Volume 212 (2021) no. 2, pp. 135-169 | Zbl | DOI
[12] The field-of-norms functor and the Hilbert symbol for higher local fields, J. Théor. Nombres Bordeaux, Volume 24 (2012) no. 1, pp. 1-39 | DOI | Numdam | Zbl
[13] On -Extensions of Multidimensional Local Fields, Math. Nachr., Volume 160 (1993), pp. 59-68 | DOI | Zbl | MR
[14] Théorie de Dieudonné cristalline. III: Théorèmes d’équivalence et de pleine fidélité, The Grothendieck Festschrift (Progress in Mathematics), Volume 86, Birkhäuser, 1990, pp. 173-247 | Zbl
[15] Commuting elements in Galois groups of function fields, Motives, polylogarithms and Hodge theory. Part I: Motives and polylogarithms (International Press Lecture Series), Volume 3, International Press, 2002, pp. 75-120 | Zbl
[16] Profinite completion and double-dual: isomorphisms and counter-examples (2080) (https://hal.science/hal-00208000v1/, version 1)
[17] Abelian local -class field theory, Math. Ann., Volume 301 (1995) no. 3, pp. 561-586 | Zbl | DOI | MR
[18] Die Struktur der absoluten Galoisgruppe -adischer Zahlkörper, Invent. Math., Volume 70 (1982), pp. 71-98 | Zbl | DOI | MR
[19] A generalization of local class field theory by using -groups I, J. Fac. Sci., Univ. Tokyo, Sect. I A, Volume 26 (1979), pp. 303-376 | Zbl | MR
[20] A generalization of local class field theory by using -groups. II, J. Fac. Sci., Univ. Tokyo, Sect. I A, Volume 27 (1980) no. 3, pp. 603-683 | Zbl
[21] Existence theorem for higher local fields, Invitation to higher local fields (Münster, 1999) (Geometry and Topology Monographs), Volume 3, Geometry and Topology Publications, 2000, pp. 165-195 | Zbl | MR
[22] Galois theory of -extensions, Springer Monographs in Mathematics, Springer, 2002, xiii+190 pages | DOI | MR
[23] Multidimensional complete fields: topology and other basic constructions, Proceedings of the St. Petersburg Mathematical Society. Vol. III (Translations. Series 2. American Mathematical Society), Volume 166, American Mathematical Society, 1995, pp. 1-34 | Zbl
[24] A version of the Grothendieck conjecture for -adic local fields, Int. J. Math., Volume 8 (1997) no. 4, pp. 499-506 | Zbl | DOI | MR
[25] Class fields and algebraic -theory (Russian), Usp. Mat. Nauk, Volume 30 (1975) no. 1, pp. 253-254 | Zbl | MR
[26] Local class field theory. (Russian), Tr. Mat. Inst. Steklova, Volume 165 (1985), pp. 143-170 | Zbl | MR
[27] Galois cohomology and Brauer group of local fields. (Russian), Proc. Steklov Inst. Math., Volume 183 (1990), pp. 159-169 | Zbl
[28] Higher fields of norms and ()-modules, Doc. Math. (2006), pp. 685-709 | Zbl | MR
[29] Cohomologie Galoisienne, Lecture Notes in Mathematics, 5, Springer, 1964 | Zbl | MR
[30] Structure de certains pro--groupes (d’aprés Demushkin), Bourbaki Seminar. Vol. 8. Years 1962/63-1963/64. Expos. 241–276, Société Mathématique de France, 1995, pp. 145-155
[31] Explicit construction of class field theory for a multidimensional local field, Izv. Akad. Nauk SSSR, Ser. Mat., Volume 49 (1985) no. 2, pp. 283-308 | Zbl
[32] Galois groups of Poincare type, Galois groups over (Mathematical Sciences Research Institute Publications), Volume 16, Springer, 1989, pp. 439-449 | Zbl | DOI
[33] Le corps des normes de certaines extensions infinies de corps locaux; applications, Ann. Sci. Éc. Norm. Supér., Volume 16 (1983), pp. 59-89 | Zbl | DOI | Numdam | MR
[34] Milnor and topological K-groups of multidimensional complete fields, Algebra Anal., Volume 9 (1997) no. 1, pp. 98-147 | Zbl
[35] Higher dimensional local fields, Invitation to higher local fields (Münster, 1999) (Geometry and Topology Monographs), Volume 3, Geometry and Topology Publications, 2000, pp. 5-18 | Zbl | MR
[36] On ramification theory in the case of an imperfect residue field, Sb. Math., Volume 194 (2003) no. 12, pp. 1747-1774 | Zbl | DOI
Cited by Sources: