Principally polarized abelian surfaces with prescribed real multiplication (RM) are parametrized by certain Hilbert modular surfaces. Thus rational genus 2 curves with RM correspond to rational points on Hilbert modular surfaces via their Jacobians, but the converse is not true. We give a simple generic description of which rational moduli points correspond to rational curves, as well as give associated Weierstrass models, in the case of RM by the ring of integers of . To prove this, we provide some techniques for reducing quadratic forms over polynomial rings.
Les surfaces abéliennes principalement polarisées à multiplications réelles (RM) par un anneau donné sont parametrisées par les points d’une surface modulaire de Hilbert. Si une courbe de genre 2 à RM est définie sur , alors elle correspond, via sa jacobienne, à un point rationnel sur la surface modulaire de Hilbert appropriée. Cependant, l’implication réciproque est fausse en générale. Dans le cas de RM par l’anneau des entiers de , nous donnons une description générique simple des points rationnels de la variété des modules correspondant à des courbes rationnelles, ainsi que des équations de Weierstrass associées. Pour ce faire, nous fournissons quelques techniques pour réduire des formes quadratiques définies sur des anneaux de polynômes.
Revised:
Accepted:
Published online:
DOI: 10.5802/jtnb.1286
Keywords: Courbes de genre 2, multiplications réelles, surfaces modulaires de Hilbert, coniques de Mestre
Alex Cowan 1; Kimball Martin 2

@article{JTNB_2024__36_2_493_0, author = {Alex Cowan and Kimball Martin}, title = {Moduli for rational genus 2 curves with real multiplication for discriminant 5}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {493--525}, publisher = {Soci\'et\'e Arithm\'etique de Bordeaux}, volume = {36}, number = {2}, year = {2024}, doi = {10.5802/jtnb.1286}, mrnumber = {4830940}, zbl = {07948975}, language = {en}, url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1286/} }
TY - JOUR AU - Alex Cowan AU - Kimball Martin TI - Moduli for rational genus 2 curves with real multiplication for discriminant 5 JO - Journal de théorie des nombres de Bordeaux PY - 2024 SP - 493 EP - 525 VL - 36 IS - 2 PB - Société Arithmétique de Bordeaux UR - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1286/ DO - 10.5802/jtnb.1286 LA - en ID - JTNB_2024__36_2_493_0 ER -
%0 Journal Article %A Alex Cowan %A Kimball Martin %T Moduli for rational genus 2 curves with real multiplication for discriminant 5 %J Journal de théorie des nombres de Bordeaux %D 2024 %P 493-525 %V 36 %N 2 %I Société Arithmétique de Bordeaux %U https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1286/ %R 10.5802/jtnb.1286 %G en %F JTNB_2024__36_2_493_0
Alex Cowan; Kimball Martin. Moduli for rational genus 2 curves with real multiplication for discriminant 5. Journal de théorie des nombres de Bordeaux, Volume 36 (2024) no. 2, pp. 493-525. doi : 10.5802/jtnb.1286. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1286/
[1] The Magma algebra system. I. The user language, J. Symb. Comput., Volume 24 (1997) no. 3-4, pp. 235-265 Computational algebra and number theory (London, 1993) | DOI | MR | Zbl
[2] The rank of , Columbia University Number Theory Seminar (New York, 1992) (Astérisque), Volume 228, Société Mathématique de France, 1995, pp. 41-68 | Zbl
[3] Field of moduli and field of definition for curves of genus 2, Computational aspects of algebraic curves (Lecture Notes Series on Computing), Volume 13, World Scientific, 2005, pp. 71-83 | DOI | MR | Zbl
[4] Rigorous computation of the endomorphism ring of a Jacobian, Math. Comput., Volume 88 (2019) no. 317, pp. 1303-1339 | DOI | MR | Zbl
[5] Shimura curve computations via surfaces of Néron-Severi rank at least 19, Algorithmic number theory (Lecture Notes in Computer Science), Volume 5011, Springer, 2008, pp. 196-211 | DOI | MR | Zbl
[6] surfaces and equations for Hilbert modular surfaces, Algebra Number Theory, Volume 8 (2014) no. 10, pp. 2297-2411 | DOI | MR | Zbl
[7] Hilbert modular surfaces, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge, 16, Springer, 1988, x+291 pages | MR
[8] On Brumer’s family of RM-curves of genus two, Tôhoku Math. J., Volume 52 (2000) no. 4, pp. 475-488 | MR | Zbl
[9] General form of Humbert’s modular equation for curves with real multiplication of , Proc. Japan Acad., Ser. A, Volume 85 (2009) no. 10, pp. 171-176 | MR | Zbl
[10] Serre’s modularity conjecture. I, Invent. Math., Volume 178 (2009) no. 3, pp. 485-504 | DOI | MR | Zbl
[11] Real multiplication through explicit correspondences, LMS J. Comput. Math., Volume 19A (2016), pp. 29-42 | DOI | MR | Zbl
[12] Construction de courbes de genre à partir de leurs modules, Effective methods in algebraic geometry (Castiglioncello, 1990) (Progress in Mathematics), Volume 94, Birkhäuser, 1991, pp. 313-334 | DOI | MR | Zbl
[13] Familles de courbes hyperelliptiques à multiplications réelles, Arithmetic algebraic geometry (Texel, 1989) (Progress in Mathematics), Volume 89, Birkhäuser, 1991, pp. 193-208 | DOI | MR
[14] Abelian varieties over and modular forms, Modular curves and abelian varieties (Progress in Mathematics), Volume 224, Birkhäuser, 2004, pp. 241-261 | DOI | MR | Zbl
[15] Sagemath, the Sage Mathematics Software System (Version 9.4) (2021) (https://www.sagemath.org)
[16] Poncelet’s theorem and curves of genus two with real multiplication of , J. Ramanujan Math. Soc., Volume 24 (2009) no. 2, pp. 143-170 | MR | Zbl
[17] Explicit moduli for curves of genus 2 with real multiplication by , Acta Arith., Volume 93 (2000) no. 2, pp. 121-138 | DOI | MR | Zbl
Cited by Sources: